跳转到内容

File:Argument principle1.png

页面内容不支持其他语言。
这个文件来自维基共享资源
维基百科,自由的百科全书

Argument_principle1.png (200 × 168像素,文件大小:7 KB,MIME类型:image/png


摘要

描述
English: Argument principle. The simple contour C (black), the zeros of f (blue) and the poles of f (red). Here we have
来源 自己的作品
作者
Public domain 本作品已被作者Oleg Alexandrov释出到公有领域。这适用于全世界。

在一些国家这可能不合法;如果是这样的话,那么:
Oleg Alexandrov无条件地授予任何人以任何目的使用本作品的权利,除非这些条件是法律规定所必需的。

其他版本
File:Argument principle1.svg是此文件的矢量版本。 如果此文件质量不低于原点阵图,就应该将这个PNG格式文件替换为此文件。

File:Argument principle1.png → File:Argument principle1.svg

更多信息请参阅Help:SVG/zh

其他语言
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
新SVG图片



The original description page was here. All following user names refer to en.wikipedia.

Made by myself with Matlab

Public domain 本作品已被作者Oleg Alexandrov释出到公有领域。这适用于全世界。

在一些国家这可能不合法;如果是这样的话,那么:
Oleg Alexandrov无条件地授予任何人以任何目的使用本作品的权利,除非这些条件是法律规定所必需的。

Source code (MATLAB)

Source code. The function arrow() used here is written and copyrighted by somebody else. I don't know the terms. Everything else is written by me, which I put in the public domain.

function main() % draw a closed spline curve with some points inside 

   curve_linewidth=1.8;  arrowsize=8; arrow_type=2; % make filled trig arrow
   ball_radius=0.015; % how big to make the points representing the zeros

   x=[0 1 1.2 0 0]; y=[0 0.1 1 1 0.5];  % points the spline will go thru

   n=length(x); 
   P=5; Q=n+2*P+1; % P will denote the amount of overlap of the path with itself
   
% Make the 'periodic' sequence xp=[x(1) x(2) x(3) ... x(n) x(1) x(2) x(3) ... ]
% of length Q. Same for yp.
   for i=1:Q
      j=rem(i, n)+1; % rem() is the remainder of division of i by n
      xp(i)=x(j);
      yp(i)=y(j);
   end

% do the spline interpolation
   t=1:length(xp);
   N=100; % how fine to make the interpolation
   tt=1:(1/N):length(xp);
   xx=spline(t, xp, tt);
   yy=spline(t, yp, tt);

% discard the redundant overlap pieces
   start=N*(P-1)+1;
   stop=N*(n+P-1)+1;
   xx=xx(start:stop); 
   yy=yy(start:stop);

   figure(1); clf; hold on; axis equal; axis off; % prepare the screen
   plot(xx, yy, 'k', 'LineWidth', curve_linewidth)% plot the path

% plot the residues and the poles -- see the ball() function below
   ball(0.5,       0.7,    ball_radius, [1, 0, 0]); % red
   ball(0.3187,    0.3024, ball_radius, [0, 0, 1]); % blue
   ball(0.7231,    0.4441, ball_radius, [0, 0, 1]);
   ball(0.7981,    0.7776, ball_radius, [0, 0, 1]);
   ball(0.2854,    0.8026, ball_radius, [1, 0, 0]);
   ball(0.6397,    0.1773, ball_radius, [1, 0, 0]);
   ball(0.2896,    0.5525, ball_radius, [0, 0, 1]);
   ball(0.9774,    0.5817, ball_radius, [1, 0, 0]);
   ball(0.6189,    1.0068, ball_radius, [1, 0, 0]);

   % place the two arrows showing the orientation of the contour
   shift=80; arrow([xx(shift) yy(shift)], [xx(shift+10) yy(shift+10)], ...
		   curve_linewidth, arrowsize, pi/8,arrow_type, [0, 0, 0])
   shift=270; arrow([xx(shift) yy(shift)], [xx(shift+10) yy(shift+10)], ...
		    curve_linewidth, arrowsize, pi/8,arrow_type, [0, 0, 0])

   axis([min(xx)-1, max(xx)+1, min(yy)-1, max(yy)+1]); % image frame

   saveas(gcf, 'argument_principle.eps', 'psc2')% save to file
   disp('Saved to argument_principle.eps. Get antialiased .png in an editor.')

   %%%%%%%%%%%%%%%%%%%%% auxiliary functions ball() and arrow() %%%%%%%%%%%%%%%%%%

function ball(x, y, radius, color) % draw a ball of given uniform color 
   Theta=0:0.1:2*pi;
   X=radius*cos(Theta)+x;
   Y=radius*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);

function arrow(start, stop, thickness, arrowsize, sharpness, arrow_type, color)
   
%  draw a line with an arrow at the end
%  start is the x,y point where the line starts
%  stop is the x,y point where the line stops
%  thickness is an optional parameter giving the thickness of the lines   
%  arrowsize is an optional argument that will give the size of the arrow 
%  It is assumed that the axis limits are already set
%  0 < sharpness < pi/4 determines how sharp to make the arrow
%  arrow_type draws the arrow in different styles. Values are 0, 1, 2, 3.
   
%       8/4/93    Jeffery Faneuff
%       Copyright (c) 1988-93 by the MathWorks, Inc.
%       Modified by Oleg Alexandrov 2/16/03

   
   if nargin <=6
      color=[0, 0, 0]; % default color
   end
   
   if (nargin <=5)
      arrow_type=0;   % the default arrow, it looks like this: ->
   end
   
   if (nargin <=4)
      sharpness=pi/4; % the arrow sharpness - default = pi/4
   end

   if nargin<=3
      xl = get(gca,'xlim');
      yl = get(gca,'ylim');
      xd = xl(2)-xl(1);            
      yd = yl(2)-yl(1);            
      arrowsize = (xd + yd) / 2;   % this sets the default arrow size
   end

   if (nargin<=2)
      thickness=0.5; % default thickness
   end
   
   
   xdif = stop(1) - start(1); 
   ydif = stop(2) - start(2);

   if (xdif == 0)
      if (ydif >0) 
	 theta=pi/2;
      else
	 theta=-pi/2;
      end
   else
      theta = atan(ydif/xdif);  % the angle has to point according to the slope
   end

   if(xdif>=0)
      arrowsize = -arrowsize;
   end

   if (arrow_type == 0) % draw the arrow like two sticks originating from its vertex
      xx = [start(1), stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)),...
	    NaN,stop(1), (stop(1)+0.02*arrowsize*cos(theta-sharpness))];
      yy = [start(2), stop(2), (stop(2)+0.02*arrowsize*sin(theta+sharpness)),...
	    NaN,stop(2), (stop(2)+0.02*arrowsize*sin(theta-sharpness))];
      plot(xx,yy, 'LineWidth', thickness, 'color', color)
   end

   if (arrow_type == 1)  % draw the arrow like an empty triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
	    stop(1)+0.02*arrowsize*cos(theta-sharpness)];
      xx=[xx xx(1) xx(2)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
	    stop(2)+0.02*arrowsize*sin(theta-sharpness)];
      yy=[yy yy(1) yy(2)];

      plot(xx,yy, 'LineWidth', thickness, 'color', color)
      
%     plot the arrow stick
      plot([start(1), stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness)],  ...
	   [start(2), stop(2)+0.02*arrowsize*sin(theta)*cos(sharpness)], ...
	   'LineWidth', thickness, 'color', color)
      
   end
   
   if (arrow_type==2) % draw the arrow like a full triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
	    stop(1)+0.02*arrowsize*cos(theta-sharpness),stop(1)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
	    stop(2)+0.02*arrowsize*sin(theta-sharpness),stop(2)];
      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')
      
%     plot the arrow stick
      plot([start(1) stop(1)+0.01*arrowsize*cos(theta)], ...
           [start(2),     stop(2)+0.01*arrowsize*sin(theta)], ...
	 'LineWidth', thickness, 'color', color)
   end

   if (arrow_type==3) % draw the arrow like a filled 'curvilinear' triangle
      curvature=0.5; % change here to make the curved part more (or less) curved
      radius=0.02*arrowsize*max(curvature, tan(sharpness));
      x1=stop(1)+0.02*arrowsize*cos(theta+sharpness);
      y1=stop(2)+0.02*arrowsize*sin(theta+sharpness);
      x2=stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness);
      y2=stop(2)+0.02*arrowsize*sin(theta)*cos(sharpness);
      d1=sqrt((x1-x2)^2+(y1-y2)^2);
      d2=sqrt(radius^2-d1^2);
      d3=sqrt((stop(1)-x2)^2+(stop(2)-y2)^2);
      center(1)=stop(1)+(d2+d3)*cos(theta);
      center(2)=stop(2)+(d2+d3)*sin(theta);

      alpha=atan(d1/d2);
      Alpha=-alpha:0.05:alpha;
      xx=center(1)-radius*cos(Alpha+theta);
      yy=center(2)-radius*sin(Alpha+theta);
      xx=[xx stop(1) xx(1)];
      yy=[yy stop(2) yy(1)];

      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')

%     plot the arrow stick
      plot([start(1) center(1)-radius*cos(theta)], [start(2), center(2)- ...
		    radius*sin(theta)], 'LineWidth', thickness, 'color', color);
   end
date/time username edit summary
19:16, 7 March 2006 en:User:141.140.104.11 (fix deprecated cp tag)
01:01, 13 June 2005 en:User:Oleg Alexandrov (replacing "thru" with "through" in comments of computer code is a bit excessive.)
22:09, 12 June 2005 en:User:Bratsche ('thru' -> 'through'; -- <a href="/wiki/User:Humanbot" title="User:Humanbot">Join and fix more!</a>)
23:19, 15 January 2005 en:User:Oleg Alexandrov (added source code.)
18:04, 15 January 2005 en:User:Oleg Alexandrov (Made by myself with Matlab {{PD}})

原始上传日志

Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.

Click on date to download the file or see the image uploaded on that date.

说明

添加一行文字以描述该文件所表现的内容
Argument principle

此文件中描述的项目

描绘内容

校验和 简体中文(已转写)

294b02fad624cf7a6b779facf62404e52d19d5e5

断定方法:​SHA-1 简体中文(已转写)

数据大小 简体中文(已转写)

6,960 字节

168 像素

200 像素

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2007年6月5日 (二) 15:252007年6月5日 (二) 15:25版本的缩略图200 × 168(7 KB)Oleg Alexandrov{{Information |Description=Made by myself with Matlab |Source=Originally from [http://en.wikipedia.org en.wikipedia]; description page is/was [http://en.wikipedia.org/w/index.php?title=Image%3AArgument_principle1.png here]. |Date=2005-01-15 (original upl
2006年3月18日 (六) 17:122006年3月18日 (六) 17:12版本的缩略图200 × 168(7 KB)MaksimLa bildo estas kopiita de wikipedia:en. La originala priskribo estas: Made by myself with Matlab {{PD-user|Oleg Alexandrov}} Source code. The function arrow() used here is written and copyrighted by somebody else. I don't know the terms. Everything else

以下页面使用本文件:

全域文件用途

以下其他wiki使用此文件: