跳转到内容

斯莱特定则

本页使用了标题或全文手工转换
维基百科,自由的百科全书

在量子化学中,斯莱特定则(Slater's rules)用于计算有效核电荷的数值。在多电子原子中,由于其它电子的屏蔽作用,每个电子都受到少于实际核电荷的正电荷吸引力。对于原子中的某一个电子,斯莱特定则可以确定它的屏蔽常数(常用S表示),并计算实际所受的有效核电荷:

这个半经验定则由约翰·C·斯莱特于1930年设计并发表。

原理内容

[编辑]

观测某一轨域(例如:3d)电子屏蔽常数S的确定方式如下:

首先将不同轨域依照此规则排列成不同的群:

  1. 拥有同一的主量子数的s和p轨域排进同一个群组,d、f、g…自成一群
  2. 依照主量子数排列

对于观测的轨域里,其他全部的电子对S的贡献为0.35(观测1s的话则取0.30)。此时出现两种情况:

如果观测的对象为s或p轨域的电子:

  1. 在(n-1)层中的电子,每颗贡献0.85于S
  2. 在(n-2)或更低层中的电子,每颗贡献1.00于S

如果观测的对象为d或f轨域的电子:在观测的对象以左的电子每颗均贡献1.00于S

根据以上规则即可确定观测轨域对原子核的有效电荷为何。随著主量子数增加,屏蔽的效果亦逐渐增强,及有效电荷数逐渐减少,

屏蔽常数

[编辑]

屏蔽常数(screening constant)为斯莱特定则电子对某一特定电子屏蔽核引力的量化数值,此效应称为shielding,为一电子所受的有效核电荷,常以S表示。

例子

[编辑]

以原子序为26的原子作为范例;其电子的排序应为1s22s22p63s23p63d64s2. 根据这些数据可以推导出不同轨域的电子之屏蔽常数与有效电荷:

注意到,因为铁的原子序为26,故有效电荷的计算要用26减去(屏蔽常数)得到。

积极性

[编辑]

参考

[编辑]