跳至內容

表面增強拉曼光譜

維基百科,自由的百科全書

表面增強拉曼光譜(英語:Surface-enhanced Raman spectroscopy)或表面增強拉曼散射(英語:surface-enhanced Raman scattering (SERS)),是一種通過吸附在粗糙金屬表面上的分子等離子體磁性二氧化矽納米管等納米結構增強拉曼散射的表面敏感技術[1],其增強因子可高達[2][3],這意味着該技術可以檢測單個分子[4][5]

歷史

[編輯]

1973年,英國南安普敦大學化學系的馬丁·弗萊舍曼帕特里克·J·亨德拉A.詹姆斯·麥奎倫發現了吸附在電化學粗糙上的吡啶的表面增強拉曼光譜[6]。這篇論文被引用超過4000次。1977年,兩個團隊分別注意到散射物質的濃度無法解釋增強信號,並且每個團隊分別提出了一種增強信號的產生機理,這兩種機理現在仍被接受。讓馬爾凡·瓦拉赫提出是電磁效應[7],而阿爾布雷希克賴頓提出是電荷轉移效應[8]橡樹嶺國家實驗室健康科學研究室的魯弗斯·里奇,預測了表面等離子體的存在[9]

機理

[編輯]

表面增強拉曼光譜的確切機理仍然在爭論中。有兩種機理基本不同的理論,實驗中仍無法準確地區分它們。電磁理論提出機理是局部表面等離子體激發,而化學理論提出是電荷轉移配合物的形成。化學理論僅適用於表面已形成化學鍵的物質,所以不能解釋所有觀察到的增強信號,而電磁理論可以應用於試樣只是物理吸附在表面的情況下。最近的研究表明,當激發分子遠離承載金屬納米顆粒的表面,導致表面等離子體現象時,表面增強拉曼現象也可以發生[10]。這一觀察有力支撐了表面增強拉曼光譜的電磁理論。2015年對表面增強拉曼光譜更強大的擴展技術——多相和多成分超靈敏表面增強拉曼散射(英語:Slippery Liquid-Infused Porous SERS (SLIPSERS)[11]的研究進一步支持了電磁理論[12]

電磁理論

[編輯]

當特定表面的電場加強時,物質吸附在該平面上的拉曼光譜的強度會增加。當一束光打至金屬表面,被擊中的金屬表面將會激發出等離子體。另外,只有當等離子體的震動方向與金屬表面垂直時才會發生拉曼散射;反之,拉曼散射不會發生。因此,表面增強拉曼光譜(SERS)實驗需要使用粗糙的金屬表面或者使用經過排列的納米微粒(nano-particle)才能有效地加強拉曼光譜。

化學理論

[編輯]

應用

[編輯]

銀納米棒製備的表面增強拉曼光譜的底物被用於檢測低豐度的生物分子的存在,因此可以檢測體液中的蛋白質[13][14][15][16]。該技術已用於檢測尿素和游離在人血清中的血漿標籤,並且可以成為癌症檢測和篩選下一代技術[15][16]。表面增強拉曼光譜具有的分析納米尺度混合物的組成的能力,使其應用於環境分析藥學材料科學藝術考古研究、法醫學藥物爆炸物檢測、食品質量分析[17]和單藻類細胞的檢測[18][19][20]。表面增強拉曼光譜與等離子體傳感結合,可用於生物分子相互作用的高靈敏度的定量檢測[21]

參考文獻

[編輯]
  1. ^ Xu, X., Li, H., Hasan, D., Ruoff, R. S., Wang, A. X. and Fan, D. L. (2013), Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis. Adv. Funct. Mater.. doi:10.1002/adfm.201203822
  2. ^ Blackie, Evan J.; Le Ru, Eric C.; Etchegoin, Pablo G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. J. Am. Chem. Soc. 2009, 131 (40): 14466–14472. PMID 19807188. doi:10.1021/ja905319w. 
  3. ^ Blackie, Evan J.; Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C. 2007, 111 (37): 13794–13803. doi:10.1021/jp0687908. 
  4. ^ Nie, S; Emory, SR. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997, 275 (5303): 1102–6. PMID 9027306. doi:10.1126/science.275.5303.1102. 
  5. ^ Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem. B. 2006, 110 (4): 1944–1948. PMID 16471765. doi:10.1021/jp054732v. 
  6. ^ Fleischmann, M.; PJ Hendra & AJ McQuillan. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters. 15 May 1974, 26 (2): 163–166. Bibcode:1974CPL....26..163F. doi:10.1016/0009-2614(74)85388-1. 
  7. ^ Jeanmaire, David L.; Richard P. van Duyne. Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Journal of Electroanalytical Chemistry. 1977, 84: 1–20. doi:10.1016/S0022-0728(77)80224-6. 
  8. ^ Albrecht, M. Grant; J. Alan Creighton. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. Journal of the American Chemical Society. 1977, 99 (15): 5215–5217. doi:10.1021/ja00457a071. 
  9. ^ Technical Highlights. New Probe Detects Trace Pollutants in Groundwater. Oak Ridge National Laboratory Review. [2017年4月25日]. (原始內容存檔於2010年1月15日). 
  10. ^ Kukushkin, V. I.; Van』kov, A. B.; Kukushkin, I. V. Long-range manifestation of surface-enhanced Raman scattering. JETP Letters. 2013, 98 (2): 64–69. ISSN 0021-3640. doi:10.1134/S0021364013150113. 
  11. ^ Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences. 2016-01-12, 113 (2): 268–273 [2017-05-02]. ISSN 0027-8424. PMC 4720322可免費查閱. PMID 26719413. doi:10.1073/pnas.1518980113. (原始內容存檔於2020-06-27) (英語). 
  12. ^ http://helldesign.net. Single-molecule detection of contaminants, explosives or diseases now possible KurzweilAI. www.kurzweilai.net. [2017-05-02]. (原始內容存檔於2021-01-26) (美國英語). 
  13. ^ Rapid Identification by Surface-Enhanced Raman Spectroscopy of Cancer Cells at Low Concentrations Flowing in a Microfluidic Channel Alessia Pallaoro, Mehran R. Hoonejani, Gary B. Braun, Carl D. Meinhart, and Martin Moskovits ACS Nano 2015 9 (4), 4328-4336 DOI: 10.1021/acsnano.5b00750
  14. ^ Yang, J; et al. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping (PDF). ACS Nano. May 2013, 7 (6): 5350–5359 [2017-04-25]. doi:10.1021/nn401199k. (原始內容 (PDF)存檔於2016-03-04). 
  15. ^ 15.0 15.1 Han, YA; Ju J; Yoon Y; Kim SM. Fabrication of cost-effective surface enhanced Raman spectroscopy substrate using glancing angle deposition for the detection of urea in body fluid. Journal of Nanoscience and Nanotechnology. May 2014, 14 (5): 3797–9. PMID 24734638. doi:10.1166/jnn.2014.8184. 
  16. ^ 16.0 16.1 Li, D; Feng S; Huang H; Chen W; Shi H; Liu N; Chen L; Chen W; Yu Y; Chen R. Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. Journal of Nanoscience and Nanotechnology. March 2014, 10 (3): 478–84. PMID 24730243. doi:10.1166/jbn.2014.1750. 
  17. ^ Andreou, C., Mirsafavi, R., Moskovits, M., & Meinhart, C. D. (2015). Detection of low concentrations of ampicillin in milk. The Analyst, 140(15), 5003–5005. doi:10.1039/c5an00864f
  18. ^ Deng, Y; Juang Y. Black silicon SERS substrate: Effect of surface morphology on SERS detection and application of single algal cell analysis. Biosensors and Bioelectronics. March 2014, 53: 37–42. doi:10.1016/j.bios.2013.09.032. 
  19. ^ Hoppmann, Eric; et al. Trace detection overcoming the cost and usability limitations of traditional SERS technology (PDF) (技術報告). Diagnostic anSERS. 2013 [2017-04-25]. (原始內容 (PDF)存檔於2016-03-05). 
  20. ^ Wackerbarth H; Salb C; Gundrum L; Niederkrüger M; Christou K; Beushausen V; Viöl W. Detection of explosives based on surface-enhanced Raman spectroscopy. Applied Optics. 2010, 49 (23): 4362–4366 [2017-04-25]. doi:10.1364/AO.49.004362. (原始內容存檔於2018-06-01). 
  21. ^ Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Logan. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale. 2016, 8: 6162–6172 [2017-04-25]. doi:10.1039/C5NR08357E. (原始內容存檔於2018-09-20).