跳至內容

模糊函數與韋格納分佈的關係

維基百科,自由的百科全書

模糊函數(Ambiguity function,AF):

韋格納分佈(Wigner distribution,WD):

模糊函數與韋格納分佈關係

[編輯]

一個訊號s(t),自相關函數為 如果為時間相依性(time-dependent),則時間相依自相關(time-dependent auto-correlation)為, 時間相依(時變)頻譜(time-dependent spectrum)可以表示的形式類似於傳統的功率譜,即對時間相依自相關函數做傅立葉變換。

不同的時間相依自相關會導致不同的時間相依功率譜。
如果 ,則時間相依功率譜變成為Wigner distribution
若對中的t做傅立葉逆轉換,得到另一個時頻表示,對稱模糊函數(symmetric ambiguity function,SAF)
模糊函數反映信號在時間和相位的相關性,並已廣泛應用在雷達和聲納系統上。 給一個對稱模糊函數,透過傅立葉變換可以得到時間相依自相關:
由上式可以推得

也就是對對稱模糊函數做兩次傅立葉變換可以得到Wigner distribution

範例

[編輯]

一個訊號為兩個Gaussian函數的和:


  • 其中集中在原點(0,0),而集中在,而相似於,除了中心點在
    • , , , ,

模糊域(ambiguity domain)的auto-term與cross-term

[編輯]

從範例中得知一項重要事實,即為,在模糊域(ambiguity domain)中的auto-term總是集中在原點(0,0),而cross-term總是在遠離原點處,所以可以用一個2D lowpass filter在模糊域中抑制cross-term的干擾,如下:
,其中為2D lowpass filter

兩高斯信號和之模糊函數與韋格納分佈應對關係

[編輯]

如果,則


  • 其中SWD為smoothed Wigner distribution

通常( 和 )當作kernal function,用來控制SWD的特性。


若Wigner分佈和對稱模糊函數用大小(magnitude)及相位(phase)表示,如下:


,
也就是說對對稱模糊函數的相位做偏微分,會等於Wigner分佈的時頻(time-frequency)中心。
相反地, ,
則為對Wigner分佈的相位做偏微分,會等於對稱模糊函數的中心。


如果,則

會集中在軸上。


如果,則

會集中在軸上。

參考

[編輯]
  • Weiss, Lora G. "Wavelets and Wideband Correlation Processing". IEEE Signal Processing Magazine, pp. 13–32, Jan 1994
  • Shie Qian, Introduction to time-frequency and wavelet transforms, Upper Saddle River, NJ : Prentice Hall, c2002
  • L. Sibul, L. Ziomek, "Generalised wideband crossambiguity functiom", IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '81.01/05/198105/1981; 6:1239- 1242.