波爾文積分 (英語:Borwein integral )是一種由波爾文父子發現的性質特殊的積分 ,常用於作為看似存在的數學規律最終失效的例子。2001年,大衛·波爾文 和喬納森·波爾文 共同發表了這個涉及sinc函數 的積分[ 1] 。
常見的例子為:
∫
0
∞
sin
(
x
)
x
d
x
=
π
2
∫
0
∞
sin
(
x
)
x
sin
(
x
/
3
)
x
/
3
d
x
=
π
2
∫
0
∞
sin
(
x
)
x
sin
(
x
/
3
)
x
/
3
sin
(
x
/
5
)
x
/
5
d
x
=
π
2
{\displaystyle {\begin{aligned}&\int _{0}^{\infty }{\frac {\sin(x)}{x}}\,dx={\frac {\pi }{2}}\\[10pt]&\int _{0}^{\infty }{\frac {\sin(x)}{x}}{\frac {\sin(x/3)}{x/3}}\,dx={\frac {\pi }{2}}\\[10pt]&\int _{0}^{\infty }{\frac {\sin(x)}{x}}{\frac {\sin(x/3)}{x/3}}{\frac {\sin(x/5)}{x/5}}\,dx={\frac {\pi }{2}}\end{aligned}}}
這種規律一直到
∫
0
∞
sin
(
x
)
x
sin
(
x
/
3
)
x
/
3
⋯
sin
(
x
/
13
)
x
/
13
d
x
=
π
2
.
{\displaystyle \int _{0}^{\infty }{\frac {\sin(x)}{x}}{\frac {\sin(x/3)}{x/3}}\cdots {\frac {\sin(x/13)}{x/13}}\,dx={\frac {\pi }{2}}.}
都是成立的。
但是到了下一個數,這個規律就突然失效了:
∫
0
∞
sin
(
x
)
x
sin
(
x
/
3
)
x
/
3
⋯
sin
(
x
/
15
)
x
/
15
d
x
=
467807924713440738696537864469
935615849440640907310521750000
π
=
π
2
−
6879714958723010531
935615849440640907310521750000
π
≃
π
2
−
2.31
×
10
−
11
.
{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {\sin(x)}{x}}{\frac {\sin(x/3)}{x/3}}\cdots {\frac {\sin(x/15)}{x/15}}\,dx&={\frac {467807924713440738696537864469}{935615849440640907310521750000}}~\pi \\[5pt]&={\frac {\pi }{2}}-{\frac {6879714958723010531}{935615849440640907310521750000}}~\pi \\[5pt]&\simeq {\frac {\pi }{2}}-2.31\times 10^{-11}.\end{aligned}}}
對於給定的一系列非零實數,即
a
0
,
a
1
,
a
2
⋯
{\displaystyle a_{0},a_{1},a_{2}\cdots }
,可以給出
∫
0
∞
∏
k
=
0
n
sin
(
a
k
x
)
a
k
x
d
x
{\displaystyle \int _{0}^{\infty }\prod _{k=0}^{n}{\frac {\sin(a_{k}x)}{a_{k}x}}\mathrm {d} x}
的封閉公式形式。為了計算這個公式,其中需要做的就是計算含有
a
k
{\displaystyle a_{k}}
相關的量之和。特別的,設
γ
=
(
γ
1
,
γ
2
,
⋯
,
γ
n
)
∈
{
±
1
}
n
{\displaystyle \gamma =(\gamma _{1},\gamma _{2},\cdots ,\gamma _{n})\in \{\pm 1\}^{n}}
即由
±
1
{\displaystyle \pm 1}
構成的
n
{\displaystyle n}
元組,於是可以寫成
b
γ
=
a
0
+
γ
1
a
1
+
γ
2
a
2
+
⋯
+
γ
n
a
n
{\displaystyle b_{\gamma }=a_{0}+\gamma _{1}a_{1}+\gamma _{2}a_{2}+\cdots +\gamma _{n}a_{n}}
即有關
a
k
{\displaystyle a_{k}}
的各種加減形式的總和,並且令
ε
γ
=
γ
1
γ
2
⋯
γ
n
{\displaystyle \varepsilon _{\gamma }=\gamma _{1}\gamma _{2}\cdots \gamma _{n}}
(其結果為
±
1
{\displaystyle \pm 1}
)。基於上述定義,可以得到該積分的值為:
∫
0
∞
∏
k
=
0
n
sin
(
a
k
x
)
a
k
x
d
x
=
π
2
a
0
⋅
C
n
{\displaystyle \int _{0}^{\infty }\prod _{k=0}^{n}{\frac {\sin(a_{k}x)}{a_{k}x}}\mathrm {d} x={\frac {\pi }{2a_{0}}}\cdot C_{n}}
其中:
C
n
=
1
2
n
⋅
n
!
∏
k
=
1
n
a
k
⋅
∑
γ
∈
{
±
1
}
n
ε
γ
b
γ
n
sgn
(
b
n
)
{\displaystyle C_{n}={\frac {1}{2^{n}\cdot n!\prod _{k=1}^{n}a_{k}}}\cdot \sum _{\gamma \in \{\pm 1\}^{n}}\varepsilon _{\gamma }b_{\gamma }^{n}\operatorname {sgn} (b_{n})}
在這裏如果
a
0
>
|
a
1
|
+
|
a
2
|
+
⋯
+
|
a
n
|
{\displaystyle a_{0}>|a_{1}|+|a_{2}|+\cdots +|a_{n}|}
,那麼有
C
n
=
1
{\displaystyle C_{n}=1}
。
進一步地,如果存在一個
n
{\displaystyle n}
對於每個
k
=
0
,
⋯
,
n
−
1
{\displaystyle k=0,\cdots ,n-1}
總有
0
<
a
n
<
2
a
k
{\displaystyle 0<a_{n}<2a_{k}}
成立,並且有
a
1
+
a
2
+
⋯
+
a
n
−
1
<
a
0
<
a
1
+
a
2
+
⋯
+
a
n
−
1
+
a
n
{\displaystyle a_{1}+a_{2}+\cdots +a_{n-1}<a_{0}<a_{1}+a_{2}+\cdots +a_{n-1}+a_{n}}
,即
n
{\displaystyle n}
為首次超過
a
0
{\displaystyle a_{0}}
的前幾項之和時的元素數量,即當
k
=
0
,
⋯
,
n
−
1
{\displaystyle k=0,\cdots ,n-1}
時有
C
k
=
1
{\displaystyle C_{k}=1}
,但在其他情況時:
C
n
=
1
−
(
a
1
+
a
2
+
⋯
+
a
n
−
a
0
)
n
2
n
−
1
⋅
n
!
∏
k
=
1
n
a
k
{\displaystyle C_{n}=1-{\frac {(a_{1}+a_{2}+\cdots +a_{n}-a_{0})^{n}}{2^{n-1}\cdot n!\prod _{k=1}^{n}a_{k}}}}
在這裏令
a
k
=
1
2
k
+
1
{\displaystyle a_{k}={\frac {1}{2k+1}}}
,即當
n
=
7
{\displaystyle n=7}
時
a
7
=
1
15
{\displaystyle a_{7}={\frac {1}{15}}}
,此時
1
3
+
1
5
+
1
7
+
1
9
+
1
11
+
1
13
≈
0.955
{\displaystyle {\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}+{\frac {1}{13}}\approx 0.955}
但是
1
3
+
1
5
+
1
7
+
1
9
+
1
11
+
1
13
+
1
15
≈
1.02
{\displaystyle {\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}+{\frac {1}{13}}+{\frac {1}{15}}\approx 1.02}
,又由於
a
0
=
1
{\displaystyle a_{0}=1}
,於是該公式成立(並且移去其中任何因子也成立):
∫
0
∞
sin
x
x
⋅
sin
x
3
x
3
⋯
sin
x
13
x
13
d
x
=
π
2
{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\cdot {\frac {\sin {\frac {x}{3}}}{\frac {x}{3}}}\cdots {\frac {\sin {\frac {x}{13}}}{\frac {x}{13}}}\mathrm {d} x={\frac {\pi }{2}}}
但在另一方面,則有:
∫
0
∞
sin
x
x
⋅
sin
x
3
x
3
⋯
sin
x
15
x
15
d
x
=
π
2
[
1
−
(
1
3
+
1
5
+
1
7
+
1
9
+
1
11
+
1
13
+
1
15
−
1
)
7
2
6
⋅
7
!
⋅
(
3
⋅
5
⋅
7
⋅
9
⋅
11
⋅
13
⋅
15
)
−
1
]
{\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x}}\cdot {\frac {\sin {\frac {x}{3}}}{\frac {x}{3}}}\cdots {\frac {\sin {\frac {x}{15}}}{\frac {x}{15}}}\mathrm {d} x={\frac {\pi }{2}}\left[1-{\frac {\left({\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}+{\frac {1}{13}}+{\frac {1}{15}}-1\right)^{7}}{2^{6}\cdot 7!\cdot (3\cdot 5\cdot 7\cdot 9\cdot 11\cdot 13\cdot 15)^{-1}}}\right]}
即與前面給出的公式的結果相同。