跳转到内容

鉴相器特性函数

维基百科,自由的百科全书

鉴相器特性函数(phase detector characteristic)是相位差的函数,可以描述鉴相器的输出。

在鉴相器的分析时,常需要考虑时域以及相域-时域的特性[1]。 若要建立鉴相器在相域-时域的适合非线性数学模型,需要找到鉴相器的特性。 鉴相器的输入是高频信号,其输出包括低频的误差修正信号,对应输入信号的相位差。若鉴相器的输出有高频成分,为了要抑制高频成分,会需要低通滤波器。鉴相器的特性是指鉴相器在相域-时域的输出和其输入相位差的相关性。

鉴相器的特性和其实现方式以及其使用的信号种类有关。考量鉴相器特性时,允许针对高频振荡使用平均法,也允许从时域下从相位同步系统非自治模型的分析和仿真,改为在相域-时域自治模型的分析和仿真[2]

类比乘法器的鉴相器特性

[编辑]

考虑用类比乘法器和低通滤波器组成的鉴相器。

相域—频域下的鉴相器

此处 and 是高频信号,分段可微函数, 是输入信号的波形是相位,而是滤波器的输出。

满足高频条件(高频条件在[3][4]),则 鉴相器特性函数会用以下方式计算,要使得时域的滤波器输出

和相域—频域模型的滤波输出

几乎相等

弦波输入

[编辑]

考虑简单的弦波输入 以及积分器滤波器。

标准的工程假设会假设滤波器会去除高频讯号,不改变其低频讯号

因此,其弦波讯号的鉴相器特性为

方波输入

[编辑]

考虑高频方波信号 and 。 针对此讯号,已有论文研究出类似的结果[5] 。 方波讯号的鉴相器特性为

一般输入讯号

[编辑]

考虑一般情形的片段连续输入信号,

输入信号可以展开为傅立叶级数,傅立叶级数的系数如下:

鉴相器特性为 [2]

显然,鉴相器特性是在内的周期性、连续有界函数。

有些专利是有关此分析方式的结果[6]

参考资料

[编辑]
  1. ^ A. J. Viterbi, Principles of Coherent Communication, McGraw-Hill, New York, 1966
  2. ^ 2.0 2.1 Leonov G.A.; Kuznetsov N.V.; Yuldashev M.V.; Yuldashev R.V. Analytical method for computation of phase-detector characteristic (PDF). IEEE Transactions on Circuits and Systems Part II. 2012, 59 (10): 633–637 [2021-05-21]. doi:10.1109/TCSII.2012.2213362. (原始内容 (PDF)存档于2021-01-20). 
  3. ^ G. A. Leonov; N. V. Kuznetsov; M. V. Yuldashev; R. V. Yuldashev. Computation of Phase Detector Characteristics in Synchronization Systems (PDF). Doklady Mathematics. 2011, 84 (1): 586–590 [2021-05-21]. doi:10.1134/S1064562411040223. (原始内容 (PDF)存档于2021-01-20). 
  4. ^ N.V. Kuznetsov; G.A. Leonov; M.V. Yuldashev; R.V. Yuldashev. Analytical methods for computation of phase-detector characteristics and PLL design. ISSCS 2011 - International Symposium on Signals, Circuits and Systems, Proceedings. 2011: 7–10. doi:10.1109/ISSCS.2011.5978639. 
  5. ^ G. A. Leonov. Computation of phase detector characteristics in phase locked loops for clock synchronization. Doklady Mathematics. 2008, 78 (1): 643–645. doi:10.1134/S1064562408040443. 
  6. ^ Patent RU 2011113212/08(019571)