# 克拉莫-克若尼關係式

## 公式定義

${\displaystyle \chi _{1}(\omega )={1 \over \pi }{\mathcal {P}}\!\!\!\int \limits _{-\infty }^{\infty }{\chi _{2}(\omega ') \over \omega '-\omega }\,d\omega '}$

${\displaystyle \chi _{2}(\omega )=-{1 \over \pi }{\mathcal {P}}\!\!\!\int \limits _{-\infty }^{\infty }{\chi _{1}(\omega ') \over \omega '-\omega }\,d\omega ',}$

## 推導

${\displaystyle \oint {\frac {\chi (\omega ^{\prime })}{\omega ^{\prime }-\omega }}d\omega ^{\prime }=0}$

${\displaystyle \oint {\chi (\omega ') \over \omega '-\omega }\,d\omega '={\mathcal {P}}\!\!\!\int \limits _{-\infty }^{\infty }{\chi (\omega ') \over \omega '-\omega }\,d\omega '-i\pi \chi (\omega )=0.}$

${\displaystyle \chi (\omega )={1 \over i\pi }{\mathcal {P}}\!\!\!\int \limits _{-\infty }^{\infty }{\chi (\omega ') \over \omega '-\omega }\,d\omega '.}$

## 物理理解

${\displaystyle P(t)=\int _{-\infty }^{\infty }\chi (t-t^{\prime })F(t^{\prime })dt^{\prime }}$

${\displaystyle \chi _{1}(\omega )={\frac {1}{\pi }}{\mathcal {P}}\int _{-\infty }^{\infty }{\frac {\omega '\chi _{2}(\omega ')}{\omega '^{2}-\omega ^{2}}}d\omega '+{\frac {\omega }{\pi }}{\mathcal {P}}{\mathcal {\int }}_{-\infty }^{\infty }{\frac {\chi _{2}(\omega ')}{\omega '^{2}-\omega ^{2}}}d\omega '.}$

${\displaystyle \chi _{1}(\omega )={\frac {2}{\pi }}{\mathcal {P}}\int _{0}^{\infty }{\frac {\omega '\chi _{2}(\omega ')}{\omega '^{2}-\omega ^{2}}}d\omega '.}$

${\displaystyle \chi _{2}(\omega )=-{\frac {2}{\pi }}{\mathcal {P}}\int _{0}^{\infty }{\frac {\omega \chi _{1}(\omega ')}{\omega '^{2}-\omega ^{2}}}d\omega '=-{\frac {2\omega }{\pi }}{\mathcal {P}}\int _{0}^{\infty }{\frac {\chi _{1}(\omega ')}{\omega '^{2}-\omega ^{2}}}d\omega '.}$

## 參考文献

1. ^ G. Arfken. Mathematical Methods for Physicists. Orlando: Academic Press. 1985. ISBN 0120598779.