双曲面模型

维基百科,自由的百科全书
跳转至: 导航搜索

幾何學中,雙曲面模型hyperboloid model),也稱為閔可夫斯基模型Minkowski model)或洛倫茲模型Lorentz model),分別冠以赫爾曼·閔可夫斯基亨德里克·洛倫茲的名字。是 n-維雙曲幾何的一個模型,其中點由 (n+1)-維閔可夫斯基空間中雙葉雙曲面的向前葉 S+ 中的點表示,而 m-維平面由閔可夫斯基空間中的 (m+1)-維平面與 S+ 的交集表示。雙曲距離函數在這個模型中有一個簡單的表達式。n-維雙曲空間的雙曲面模型與凱萊-克萊因模型密切相關:兩者都是射影模型,它們的等距群射影群的一個子群。

闵可夫斯基二次型[编辑]

如果 (x0, x1, …, xn) 是 (n+1)-维坐标空间 Rn+1 中一个向量,闵可夫斯基二次型定义为

 Q(x_0, x_1, \ldots, x_n) = x_0^2 - x_1^2 - \ldots - x_n^2.

向量 vRn+1 使得 Q(v) = 1 构成一个 n-维双曲面 S,由两个连通分支(或说叶)组成:向前或未来叶 S+,其中 x0>0 与向后叶或过去叶 S,其中 x0<0。n-维双曲面模型中的点是向前叶 S+ 上的点。

闵可夫斯基双线性形式 B 是闵可夫斯基二次型 Q极化

B(u, v) = (Q(u+v)-Q(u)-Q(v))/2.

具体地

B((x_0, x_1, \ldots, x_n), (y_0, y_1, \ldots, y_n)) = x_0y_0 - x_1 y_1 - \ldots - x_n y_n.

S+ 中两点 uv双曲距离由公式

d(u, v) = \cosh^{-1}(B(u, v))

给出。

等距[编辑]

不定正交群 O(1,n),也称为 (n+1)-维洛伦兹群,是保持闵可夫斯基双线性形式的 (n+1)×(n+1) 矩阵形成的李群。换种语言说,它是闵可夫斯基空间的线性等距群。特别地,这个群保持双曲面 SO(1,n) 保持第一个坐标的符号的子群是正时洛伦兹群,记作 O+(1,n)。它的行列式为 1 矩阵的子群 SO+(1,n) 是一个 n(n+1)/2 维连通李群,通过线性自同构作用在 S+ 上且保持双曲距离。这个作用是传递的,向量 (1,0,…,0) 的稳定子由如下形式矩阵组成

\begin{pmatrix}  
1      & 0 & \ldots & 0 \\
0      &   &        &   \\
\vdots &   & A      &   \\
0      &   &        &   \\
\end{pmatrix}

这里 A 属于紧特殊正交群 SO(n)(推广了 n=3 的旋转群)。从而 n-维双曲空间是一个齐性空间以及秩为 1 的黎曼对称空间

 \mathbb{H}^n=SO^{+}(1,n)/SO(n).

事实上,群 SO+(1,n) 是 n-维双曲空间保持定向的整个等距群。

相关条目[编辑]

参考文献[编辑]

  • Alekseevskij, D.V.; Vinberg, E.B.; Solodovnikov, A.S., Geometry of Spaces of Constant Curvature, Encyclopaedia of Mathematical Sciences, Berlin, New York: Springer-Verlag, 1993, ISBN 3-540-52000-7 
  • Anderson, James, Hyperbolic Geometry, Springer Undergraduate Mathematics Series 2nd, Berlin, New York: Springer-Verlag, 2005, ISBN 978-1-85233-934-0 
  • Ratcliffe, John G., Foundations of hyperbolic manifolds, Berlin, New York: Springer-Verlag, 1994, ISBN 978-0-387-94348-0 , Chapter 3
  • Ryan, Patrick J., Euclidean and non-Euclidean geometry: An analytical approach, Cambridge, London, New York, New Rochelle, Melbourne, Sydney: Cambridge University Press, 1986, ISBN 0-521-25654-2