液力变矩器

维基百科,自由的百科全书
跳转至: 导航搜索
ZF液力变矩器
液力变矩器的剖面图模型

液力变矩器,亦称扭力转换器,香港車行稱之東菇,是在液力耦合器的基础上改进而成,用来传递旋转动力。它将动力源(通常是发动机或电机)与工作机连接起来,可同液力耦合器一样起到离合器的作用,但不同的是,液力变矩器可以改变力矩的大小。

详细说明[编辑]

液力变矩器以液体为工作介质的一种非刚性扭矩变换器,是液力传动的形式之一。图为液力变矩器,它有一个密闭工作腔,液体在腔内循环流动,其中泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相连。动力机(内燃机、电动机等)带动输入轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、导轮再返回泵轮,周而复始地循环流动。泵轮将输入轴的机械能传递给液体。高速液体推动涡轮旋转,将能量传给输出轴。液力变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输入扭矩,因而称为变矩器。输出扭矩与输入扭矩的比值称变矩系数,输出转速为零时的零速变矩系数通常约2~6。变矩系数随输出转速的上升而下降。液力变矩器的输入轴与输出轴间靠液体联系,工作构件间没有刚性联接。液力变矩器的特点是:能消除冲击和振动,过载保护性能和起动性能好;输出轴的转速可大于或小于输入轴的转速,两轴的转速差随传递扭矩的大小而不同;有良好的自动变速性能,载荷增大时输出转速自动下降,反之自动上升;保证动力机有稳定的工作区,载荷的瞬态变化基本不会反映到动力机上。液力变矩器在额定工况附近效率较高,最高效率为85%~92%。叶轮是液力变矩器的核心。它的型式和布置位置以及叶片的形状,对变矩器的性能有决定作用。有的液力变矩器有两个以上的涡轮、导轮或泵轮,借以获得不同的性能。最常见的是正转(输出轴和输入轴转向一致)、单级(只有一个涡轮)液力变矩器。兼有变矩器和耦合器性能特点的称为综合式液力变矩器,例如导轮可以固定、也可以随泵轮一起转动的液力变矩器。为使液力变矩器正常工作,避免产生气蚀和保证散热,需要有一定供油压力的辅助供油系统和冷却系统。

液力变矩器的液流[编辑]

液力变矩器的液流分为涡流和环流。涡流方向是由泵轮到涡轮再到导轮,最后回到泵轮,从而不断循环。环流方向就是液体随同工作轮一起绕轴线做圆周运动。环流与涡流合成后的螺旋方向即为实际的液流方向。

液力变矩器的变矩原理[编辑]

液力偶合器中油液流动反向,液力偶合器泵轮主动与发动机曲轴刚性联接,转动时,离心力使ATF向外甩,冲击涡轮叶片,涡轮从动,涡轮回流的液体又冲击泵轮,阻碍了泵轮转动,其特点是转动效率低,但在一定范围内能实现无极变速,有利于汽车起步换挡的平顺性。 液力变矩器中油液流动方向,在增加了导轮的液力变矩器中,自动变矩器油从涡轮流入导轮后方向会改变,当油液再流回到泵轮时,其流动方向变得与泵轮运动方向相同,这就加强了泵轮的转动力矩,进而也就增大了输出转矩,这就是液力变矩器可以增大转矩的原因。 单向离合器的作用,由于导轮轴上装有单向离合器,使得导轮在受到来自涡轮的油液冲击时,能保持不动,这样才能使导轮改变了经过它的油流方向,进而达到增大转矩的作用。 当变矩器变为偶合器时,液力变矩器中油液流动方向,涡轮开始转动时(即汽车起步后),转动涡轮的使得从涡轮流入导轮的油液方向有所变化。在涡轮转动产生的离心力作用下,油流不再直接射向导轮,而是越过导轮流回泵轮。流回泵轮的油流方向不再与泵轮转向相同,因而失去了加强泵轮转矩的作用,所以此时液力变矩器又变沉了液力偶合器,不再具有增大转矩的作用。当导轮开始转动后,随着涡轮转速继续增加,从涡轮进入导轮的油液冲击到了导轮的背向,使导轮以与涡轮和泵轮相同的方向转动。

液力变矩器的工作原理[编辑]

(1)机械能→动能过程:泵轮由发动机驱动旋转,推动液体随泵轮一起绕其轴线旋转,使其获得一定的速度(动能)和压力。其速度决定于泵轮的半径和转速。 (2)动能→机械能过程:液体靠动能冲向涡轮,作用于叶片一个推力,推动涡轮一起旋转,涡轮获得一定转矩(机械能)。少部分液体动能在高速流动中与流道摩擦生热被消耗。 (3)动量矩变化过程:导轮固定,液体流经时无机械能转化,由于导轮叶片形态变化(进出口叶片面积不等),液流速度和方向发生变化,其动量矩改变。动量矩变化取决于叶片面积的变化。 涡轮转速随外界负荷的不同而变化,液流冲击叶片的方向和速度亦随之变化。[3]

增扭:涡轮速度低时,涡流速度大,环流速度小,合成液流的方向冲击导轮正面,经导向顺着泵轮叶片槽冲击涡轮,涡轮的输出转矩增大。 MW=MB+MD 式中:MW——涡轮转矩; MB——泵轮转矩; MD——导轮转矩。 耦合:随着涡轮转速的增加,当泵轮与涡轮转速相接近时,涡流速度最小,环流速度最大,合成液流的方向正好与导轮叶片相切,MD=0,此时相当于耦合器,对应的转速称为耦合工作点。 MW=MB 降速:涡轮速度增大,其转速高于泵轮转速涡流速度小,环流速度大,合成液流的方向冲击导轮背面,导轮的转矩反向,涡轮的输出转矩减小。 MW=MB-MD 失速:涡轮负载过大而停转(如怠速时)泵轮仍旋转但转速低,变矩器只输入,不输出,涡轮得到的转矩不足以克服阻力矩。涡流速度最小,环流速度最大,合成液流的方向垂直冲击导轮背面,导轮的转矩反向且基本等于泵轮的转矩,涡轮的输出转矩最小,仍用于克服摩擦力,如怠速。 MW =0

总之,外负荷F阻↖——车速V↘——涡轮转速n↘——输出扭矩MT↖及F阻↘——V↖——n↖——M↘。这种不需控制而随外界负荷变化而改变输出转矩和转速的性能称为变矩器的自动适应性。

特点[编辑]

液力变矩器的特性 液力变矩器的特性可用几个外界负荷有关的特性参数或特性曲线来评价。描述液力变矩器的特性参数主要有转数比、泵轮转矩系数、变矩系数、效率和穿透性等。描述液力变矩器的特性曲线主要有外特性曲线、原始特性曲线和输入性曲线等。

故障检测[编辑]

油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉烫手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 油压过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏;吸油滤网安装不当;油液起泡沫;进出口压力阀不能关闭或弹簧刚度减小。 如果出现供油压力过低,应首先检查油位:若油位低于最低刻度,应补充油液;若油位正常,应检查进、出油管有无泄漏,若有漏油,应予以排除。若进、出管密封良好,应检查进、出口压力阀的工作情况,若进、出口压力阀不能关闭,应将其拆下,检查其上零件有无裂纹或伤痕,油路和油孔是否畅通,以及弹簧刚度是否变小,发现问题应及时解决。如果压力阀正常,应拆下油管或滤网进行检查。如有堵塞,应进行清洗并清除沉积物;如油管畅通,则需检查液压泵,必要时更换液压泵。如果液压油起泡沫,应检查回油管的安装情况,如回油管的油位低于油池的油位,应重新安装回油管。

参见[编辑]