海佛烈克极限

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是本页的一个历史版本,由Bowen.kiwi留言 | 贡献2020年7月5日 (日) 05:17 →‎端粒的長度编辑。这可能和当前版本存在着巨大的差异。

海佛烈克極限海夫力克極限(英語:Hayflick limit[註 1],又稱海佛烈克現象Hayflick phenomenon),指的是一個正常的人類細胞群體,在細胞分裂停止前所能分裂的次數限制。經驗證據英语Empirical evidence顯示,每個細胞的DNA所相連接的端粒,在每次新的細胞分裂後會略微縮減,直至縮減至一個極限長度為止[2][3]

海佛烈克極限的概念是在1961年,由賓夕法尼亞州費城威斯達研究所英语Wistar Institute的美國解剖學家李奧納多·海佛烈克英语Leonard Hayflick提出。海佛烈克證明了一個正常的人類胎兒細胞群體,在細胞培養下可以分裂40─60次,而此細胞群體將會進入衰老英语Senescence期;這駁斥了諾貝爾獎得主亞歷克西·卡雷爾「一般正常的細胞具有永生性英语Biological immortality」的論點。每次有絲分裂會略微縮短細胞中附著於DNA上的端粒,而人體中端粒的縮短最終會导致無法進行細胞分裂;這種細胞群體衰老機制的出現,會和整個人體的生理性衰老有所關連。此機制似乎也能夠防止基因體不穩定英语Genome instability;端粒的縮短會限制細胞分裂的次數,也就可以預防人類衰老細胞中癌细胞的發展情況。然而,端粒的縮短會傷害免疫功能,因此可能同时增加了患癌風險[4]

端粒的長度

在細胞凋亡之前,每個細胞平均可以分裂50─70次。當細胞分離時,染色體末端的端粒會變小。海佛烈克極限理論認為,隨著細胞分裂,端粒會不斷縮小,最終將不會出現在染色體上;此最終階段就是所謂的衰老期,也證明了「端粒損壞與細胞衰老之間具有關連性」的概念。

海佛烈克極限發現與DNA鏈末端的端粒區域長度相關。在DNA複製的過程中,每個DNA鏈末端的短小片段(端粒)在每次DNA複製完成後,即無法複製而丟失[5]。DNA的端粒區域無法解碼成任何一個蛋白質,僅僅在DNA的末端區域形成一個重複的編碼,而DNA複製後失去的也是這個編碼。在多次DNA複製之後,端粒就會消耗殆盡,導致細胞開始凋亡。這種機制可以預防DNA複製的錯誤,進而預防基因突變的發生。一旦端粒在細胞多次複製之後消耗殆盡,細胞將無法複製下去;此時該細胞就會達到自身的海佛烈克極限[6][7]

這個過程不會發生在大多數的癌細胞中,起因在於一種稱做端粒酶酵素。此酵素可以維持端粒的長度,這會導致癌細胞中的端粒不會縮短,且給予這些細胞無限複製的潛力[8]。目前正在研擬中的癌症治療方案英语Experimental cancer treatment提出使用酶抑制劑,可以阻止端粒的復原,讓癌細胞變得如同一般體細胞一樣凋亡[9]。此外,端粒酶激活劑可以修復或延長健康細胞中的端粒,進而延長這些健康細胞的海佛烈克極限,但也会給予它们癌細胞的特徵。端粒酶的激活也可能延長免疫系統中細胞的端粒長度,來預防端粒非常短的細胞發生癌变[來源請求]

體外實驗中,肌肽可以增加人類纖維母細胞的海佛烈克極限[10],也可以抑制端粒縮短的速度[11]

註解

  1. ^ 澳大利亞諾貝爾獎得主弗蘭克·麥克法蘭·伯內特爵士,首次在他的著作Intrinsic Mutagenesis: A Genetic Approach to Ageing(1974年)使用「海佛烈克極限」的術語[1]

参考文献

  1. ^ Wright. Hayflick, his limit, and cellular ageing (PDF). Nature Reviews Molecular Cell Biology. 2000, 1 (1): 72–76. PMID 11413492. doi:10.1038/35036093.  author-name-list parameters只需其一 (帮助); Authors list列表缺少|last1= (帮助)[永久失效連結]
  2. ^ Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961, 25 (3): 585–621. PMID 13905658. doi:10.1016/0014-4827(61)90192-6. 
  3. ^ Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965, 37 (3): 614–636. PMID 14315085. doi:10.1016/0014-4827(65)90211-9. 
  4. ^ Eisenberg DTA. An evolutionary review of human telomere biology: The thrifty telomere hypothesis and notes on potential adaptive paternal effects. American Journal of Human Biology. 2011, 23 (2): 149–167. PMID 21319244. doi:10.1002/ajhb.21127. 
  5. ^ Watson JD. Origin of concatemeric T7 DNA. Nature New Biol. 1972, 239 (94): 197–201. PMID 4507727. doi:10.1038/newbio239197a0. 
  6. ^ Olovnikov AM. Telomeres, telomerase and aging: Origin of the theory. Exp. Gerontol. 1996, 31 (4): 443–448. PMID 9415101. doi:10.1016/0531-5565(96)00005-8. 
  7. ^ Olovnikov, A. M. Принцип маргинотомии в матричном синтезе полинуклеотидов [Principles of marginotomy in template synthesis of polynucleotides]. Doklady Akademii Nauk SSSR. 1971, 201: 1496–1499. 
  8. ^ Feng F; et al. The RNA component of human telomerase. Science. 1995, 269 (5228): 1236–1241. PMID 7544491. doi:10.1126/science.7544491. 
  9. ^ Wright WE, Shay JW. Telomere dynamics in cancer progression and prevention: Fundamental differences in human and mouse telomere biology. Nature Medicine. 2000, 6 (8): 849–851. PMID 10932210. doi:10.1038/78592. 
  10. ^ McFarlan GA, Holliday R. Retardation of the senescence of cultured human fibroblasts by carnosine. Exp. Cell Res. 1994, 212 (2): 167–175. PMID 8187813. doi:10.1006/excr.1994.1132. 
  11. ^ Shao L; Li QH; Tan Z. L-carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochem Biophys Res Commun. 2004, 324 (2): 931–936. PMID 15474517. doi:10.1016/j.bbrc.2004.09.136. 

参见