树状数组
树状数组或二元索引树(英語:Binary Indexed Tree),又以其发明者命名为Fenwick树,最早由Peter M. Fenwick于1994年以A New Data Structure for Cumulative Frequency Tables[1]为题发表在SOFTWARE PRACTICE AND EXPERIENCE。其初衷是解决数据压缩裡的累积频率(Cumulative Frequency)的计算问题,现多用于高效计算数列的前缀和, 区间和。它可以以的时间得到任意前缀和,并同时支持在时间内支持动态单点值的修改。空间复杂度。
结构起源
按照Peter M. Fenwick的说法,正如所有的整数都可以表示成2的幂和,我们也可以把一串序列表示成一系列子序列的和。采用这个想法,我们可将一个前缀和划分成多个子序列的和,而划分的方法与数的2的幂和具有极其相似的方式。一方面,子序列的个数是其二进制表示中1的个数,另一方面,子序列代表的f[i]的个数也是2的幂。[2][3][4]
基本操作
预备函数
定义一个Lowbit函数,返回参数转为二进制后,最后一个1的位置所代表的数值.
例如,Lowbit(34)的返回值将是2;而Lowbit(12)返回4;Lowbit(8)返回8。
将34转为二进制,为0010 0010,这里的"最后一个1"指的是从位往前数,见到的第一个1,也就是位上的1.
程序上,((Not I)+1) And I表明了最后一位1的值,
仍然以34为例,Not 0010 0010的结果是 1101 1101(221),加一后为 1101 1110(222), 把 0010 0010与1101 1110作AND,得0000 0010(2).
Lowbit的一个简便求法:(C++)
int lowbit(int x)
{
return x&(-x);
}
新建
定义一个数组 BIT,用以维护的前缀和,则:
具体能用以下方式实现:(C++)
void build()
{
for (int i = 1; i <= MAX_N; i++)
{
BIT[i] = A[i - 1];
for (int j = i - 2; j >= i - lowbit(i); j--)
BIT[i] += A[j];
}
}
//注:这里的求和将汇集到非终端结点(D00形式)
//BIT中仅非终端结点i值是 第0~i元素的和
//终端结点位置的元素和,将在求和函数中求得
//BIT中的index,比原数组中大1
修改
假设现在要将的值增加delta,
那么,需要将覆盖的区间包含的值都加上delta,
这个过程可以写成递归,或者普通的循环。
需要计算的次数与数据规模N的二进制位数有关,即这部分的时间复杂度是O(LogN)
修改函数的C++写法
void edit(int i, int delta)
{
for (int j = i; j <= MAX_N; j += lowbit(j))
BIT[j] += delta;
}
求和
假设我们需要计算的值。
- 首先,将ans初始化为0,将i初始化为k
- 将ans的值加上BIT[i]
- 将i的值减去lowbit(i)
- 重复步骤2~3,直到i的值变为0
求和函数的C/C++写法
int sum (int k)
{
int ans = 0;
for (int i = k; i > 0; i -= lowbit(i))
ans += BIT[i];
return ans;
}
时空复杂度
初始化复杂度最优为
单次询问复杂度,其中N为数组大小
单次修改复杂度,其中N为数组大小
空间复杂度
应用
求逆序对数[5]
逆序对数是一个数列中在它前面有比它大的个数。如4312的逆序对数是0+1+2+2=5。
可以先把数列中的数按大小顺序转化成到的整数,使得原数列成为一个的排列,创建一个树状数组,用来记录这样一个数组(下标从1算起)的前缀和:若排列中的数当前已经出现,则的值为,否则为。初始时数组的值均为,从排列中的最後一个数开始遍历,每次在树状数组中查询有多少个数小于当前的数(即用树状数组查询数组目前个数的前缀和)并加入计数器,之后对树状数组执行修改数组第个数值加的操作。
参考文献
- ^ Peter M. Fenwick. A new data structure for cumulative frequency tables. Software: Practice and Experience. 1994, 24 (3): 327–336. doi:10.1002/spe.4380240306.
- ^ Binary indexed tree-树状数组
- ^ Binary Indexed Trees
- ^ TopCoder树状数组教程的译文. [2012-11-18]. (原始内容存档于2013-04-10).
- ^ http://blog.csdn.net/cattycat/article/details/5640838