跳转到内容

圓判據

维基百科,自由的百科全书

这是本页的一个历史版本,由36.229.94.168留言2023年12月10日 (日) 15:52 (全形字232字, > 200, 不是小作品)编辑。这可能和当前版本存在着巨大的差异。

圓判據(circle criterion)是非線性控制穩定性理論中,針對非線性時變系統的稳定性判据。可以視為是針對线性时不变系统(LTI)的奈奎斯特稳定判据之擴展版本。

簡介

考慮一個線性系統,但有非線性的回授,也就是在回授路徑上有非線性元素,假設此元素滿足區間條件(即),而且(為了簡化系統)開迴路系統穩定。則閉迴路系統全域漸近穩定的條件是線性系統的尼奎斯特轨迹不會穿過以X軸上線段為直徑的圓。

一般敘述

考慮非線性系統

假設

  1. is stable

則存在使得針對系統的任意解,下式都成立;

條件3稱為「頻率條件」,條件1稱為「區間條件」。

相關條目

參考資料

  • Haddad, Wassim M.; Chellaboina, VijaySekhar. Nonlinear Dynamical Systems and Control: a Lyapunov-Based Approach.. Princeton University Press. 2011. ISBN 9781400841042. 

外部連結