跳转到内容

相变材料

维基百科,自由的百科全书

这是相变材料当前版本,由InternetArchiveBot留言 | 贡献编辑于2024年3月2日 (六) 02:26 (补救0个来源,并将1个来源标记为失效。) #IABot (v2.0.9.5)。这个网址是本页该版本的固定链接。

(差异) ←上一修订 | 最后版本 (差异) | 下一修订→ (差异)
图为乙酸钠加热垫英语heating pad,当乙酸钠溶液晶化时,放出大量热。
加热垫晶化放热视频

相变材料(英語:phase change material,缩写为:PCM)是指在相变时放出或吸收大量热,以达到加热或降温作用的物质。通常情况下,该物质将在液态和固态间进行转变,但也可以在非传统状态间进行转变,例如从一种结晶态转变为能量更高或更低的另一种结晶态。

相变材料物质状态改变时所需的熔化热通常远大于其显热英语sensible heat,相变温度(PCT)附近融化和凝固时,相变材料可以储存和释放巨大的能量。例如,冰融化成水的熔化热为333.55 J/g,即一克冰需要吸收333.55 J热量才能融化成水。然而一克水吸收4.18 J热量温度升高1度。因此水/冰是一种非常有用的相变材料,自阿契美尼德王朝开始人们就用它在冬天释放热量,在夏天给房子降温。

相变材料可按组成物质种类进行分类。有机相变材料通常从石油、植物或动物上提取,水合盐相变材料通常由海水或矿物中提取。还有一类是固体转变为固体的相变材料。他们在生活中有着广泛的应用,加热垫、电话配电箱冷却和服饰制造等都可以看到相变材料的身影。

特性和分类

[编辑]

液体→固体、固体→液体、固体→气体和液体→气体的变化过程均可储存潜热,但只有液体→固体和固体→液体变化过程较为现实。尽管液体→气体过程中转换的热量更多,但是气态体积较大,存储需要高压,不易于使用。固态→固态的转变速度十分缓慢,转换的热量相对较少。

固态-液态相变材料在达到相变温度前,其特性与显热英语sensible heat储存材料相似,吸收热量的同时温度逐渐上升。但是当到达相变温度(熔点)时,开始大量吸收热量,但是温度保持不变,材料完全融化后,温度继续上升。当液态材料所处环境温度下降时便开始凝固,释放其所储存的潜热。各种相变材料可供选择,−5到190 °C之间任意相变温度均有对应。[1]而在20-30 °C人体舒适温度范围内,有些材料潜热吸收十分高效,可以达到200 kJ/kg,与之对应的石料的热容一般为1 kJ/kg.°C,因此保持相同温度时每千克材料吸收的热量是石料的200倍。[2]水的比热容为4.21 kJ/kg.°C,该材料存储密度为水的12.5倍至50倍之间。

有机相变材料

[编辑]

碳氢化合物,主要是石蜡(CnH2n+2)和脂质类物质,也有一种是糖醇。[3][4][5]

  • 优点
    • 凝固时没有过冷效应
    • 能够一致地融化
    • 自成核性质
    • 与常规结构材料相容性好
    • 没有隔离
    • 化学性质稳定
    • 安全、无反应
  • 缺点
    • 固态导热系数低,冷冻过程中需要保持高传热率。已发现的发现纳米复合材料可有效将热导率提高216%[6][7]
    • 体积潜热储存容量可能较低
    • 易燃,置于专门的容器中可以有效隔离。

非有机相变材料

[编辑]

水合盐 (MxNyH2O) [8]

  • 优点
    • 体积潜热储存容量高
    • 易于获取,成本低
    • 高熔点
    • 热传导率高
    • 熔化热高
    • 不可燃
  • 缺点
    • 融化不一致,容易出现相位分离[9]
    • 对大多数材料有腐蚀性[10][11][12]可以封装在不与之反应的塑料内克服
    • 某些混合物体积变化很大
    • 固态到液态转变过程中出现的过冷现象是个麻烦,需要使用成核剂,反复使用后可能不再起作用
Infinite R Energy Sheet
共晶水合盐相变材料与成核剂和胶凝剂。应用于被动温度稳定,为建筑暖通系统节能。[13]

应用

[编辑]
治疗新生儿窒息英语birth asphyxia时在手术台上铺设相变材料[14][15]
防凝保护系统英语Ice protection system凝固态转变液体材料(S-PSL),[16] a class of phase change materials.

应用领域[1][17]包括并不局限于:

参见

[编辑]

热导管

参考资料

[编辑]
  1. ^ 1.0 1.1 Kenisarin, M; Mahkamov, K. Solar energy storage using phase change materials. Renewable and Sustainable –1965. 2007, 11 (9): 1913–1965. doi:10.1016/j.rser.2006.05.005. 
  2. ^ Sharma, Atul; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009, 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005. 
  3. ^ "Heat storage systems"页面存档备份,存于互联网档案馆) (PDF) by Mary Anne White, brings a list of advantages and disadvantages of Paraffin heat storage. A more complete list can be found in AccessScience页面存档备份,存于互联网档案馆) website from McGraw-Hill, DOI 10.1036/1097-8542.YB020415, last modified: March 25, 2002 based on 'Latent heat storage in concrete II, Solar Energy Materials, Hawes DW, Banu D, Feldman D, 1990, 21, pp.61–80.
  4. ^ Floros, Michael C.; Kaller, Kayden L. C.; Poopalam, Kosheela D.; Narine, Suresh S. Lipid derived diamide phase change materials for high temperature thermal energy storage. Solar Energy. 2016-12-01, 139: 23–28. Bibcode:2016SoEn..139...23F. doi:10.1016/j.solener.2016.09.032. 
  5. ^ Agyenim, Francis; Eames, Philip; Smyth, Mervyn. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renewable Energy. 2011-01-01, 36 (1): 108–117. doi:10.1016/j.renene.2010.06.005. 
  6. ^ Fleishcher, A.S. Improved heat recovery from paraffn-based phase change materials due to the presence of percolating graphene networks. Improved Heat Recovery from Paraffn-based Phase Change Materials Due to the Presence of Percolating Graphene Networks. 2014, 79: 324–333. 
  7. ^ (2015). Thermal energy storage using phase change materials: fundamentals and applications. Springer
  8. ^ Phase Change Energy Solutions https://id.elsevier.com/as/authorization.oauth2?platSite=SD%2Fscience&scope=openid+email+profile+els_auth_info+urn%3Acom%3Aelsevier%3Aidp%3Apolicy%3Aproduct%3Ainst_assoc&response_type=code&redirect_uri=https%3A%2F%2Fwww.sciencedirect.com%2Fuser%2Fidentity%2Flanding&authType=SINGLE_SIGN_IN&prompt=none&client_id=SDFE-v3&state=retryCounter%3D0%26csrfToken%3D7b73d88c-a46a-4ce5-8a58-7a21b367a560%26idpPolicy%3Durn%253Acom%253Aelsevier%253Aidp%253Apolicy%253Aproduct%253Ainst_assoc%26returnUrl%3Dhttps%253A%252F%252Fwww.sciencedirect.com%252Ftopics%252Fengineering%252Fsalt-hydrate%26prompt%3Dnone%26cid%3Dtpp-9ec8e252-5eaf-44ce-a8d4-838d9800b9b3. [February 28, 2018].  缺少或|title=为空 (帮助)
  9. ^ Cantor, S. DSC study of melting and solidification of salt hydrates. Thermochimica Acta. 1978, 26 (1–3): 39–47 [2020-06-27]. doi:10.1016/0040-6031(78)80055-0. (原始内容存档于2021-03-11). 
  10. ^ olé, A.; Miró, L.; Barreneche, C.; Martorell, I.; Cabeza, L.F. Corrosion of metals and salt hydrates used for thermochemical energy storage. Renewable Energy. 2015, 75: 519–523. doi:10.1016/j.renene.2014.09.059. [失效連結]
  11. ^ A. Sharma; V. Tyagi; C. Chen; D. Buddhi. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. February 2009, 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005. 
  12. ^ Sharma, Someshower Dutt; Kitano, Hiroaki; Sagara, Kazunobu. Phase Change Materials for Low Temperature Solar Thermal Applications (PDF). Res. Rep. Fac. Eng. Mie Univ. 2004, 29: 31–64 [2020-06-27]. (原始内容存档 (PDF)于2020-06-27). 
  13. ^ Infinite R™. Insolcorp, Inc. [2017-03-01]. (原始内容存档于2020-12-02). 
  14. ^ 14.0 14.1 Aravind, Indulekha; Kumar, KP Narayana. How two low-cost, made-in-India innovations MiraCradle & Embrace Nest are helping save the lives of newborns. timesofindia-economictimes. 2015-08-02 [2020-06-27]. (原始内容存档于2020-08-20). 
  15. ^ MiraCradle - Neonate Cooler. [2022-01-19]. (原始内容存档于2021-03-11). 
  16. ^ 16.0 16.1 Chatterjee, Rukmava; Beysens, Daniel; Anand, Sushant. Delaying Ice and Frost Formation Using Phase-Switching Liquids. Advanced Materials. 2019, 0 (17): 1807812. ISSN 1521-4095. PMID 30873685. doi:10.1002/adma.201807812可免费查阅 (英语). 
  17. ^ Omer, A. Renewable building energy systems and passive human comfort solutions. Renewable and Sustainable Energy Reviews. 2008, 12 (6): 1562–1587. doi:10.1016/j.rser.2006.07.010. 

来源

[编辑]
  • PHASE CHANGE MATERIAL (PCM) BASED ENERGY STORAGE MATERIALS AND GLOBAL APPLICATION EXAMPLES

Zafer URE M.Sc., C.Eng. MASHRAE HVAC Applications页面存档备份,存于互联网档案馆

  • Phase Change Material Based Passive Cooling Systems Design Principal and Global Application Examples

Zafer URE M.Sc., C.Eng. MASHRAE Passive Cooling Application页面存档备份,存于互联网档案馆