Clausen function plot
克劳森函数 是丹麦 数学家 托马斯·克劳森 最先研究的特殊函数 ,定义如下:
Cl
2
(
φ
)
=
−
∫
0
φ
log
|
2
sin
x
2
|
d
x
:
{\displaystyle \operatorname {Cl} _{2}(\varphi )=-\int _{0}^{\varphi }\log {\Bigg |}2\sin {\frac {x}{2}}{\Bigg |}\,dx:}
克劳森函数的傅立叶级数 为
Cl
2
(
φ
)
=
∑
k
=
1
∞
sin
k
φ
k
2
=
sin
φ
+
sin
2
φ
2
2
+
sin
3
φ
3
2
+
sin
4
φ
4
2
+
⋯
{\displaystyle \operatorname {Cl} _{2}(\varphi )=\sum _{k=1}^{\infty }{\frac {\sin k\varphi }{k^{2}}}=\sin \varphi +{\frac {\sin 2\varphi }{2^{2}}}+{\frac {\sin 3\varphi }{3^{2}}}+{\frac {\sin 4\varphi }{4^{2}}}+\,\cdots }
Cl
2
(
m
π
)
=
0
,
m
=
0
,
±
1
,
±
2
,
±
3
,
⋯
{\displaystyle {\text{Cl}}_{2}(m\pi )=0,\quad m=0,\,\pm 1,\,\pm 2,\,\pm 3,\,\cdots }
极大值点 :
θ
=
π
3
+
2
m
π
[
m
∈
Z
]
{\displaystyle \theta ={\frac {\pi }{3}}+2m\pi \quad [m\in \mathbb {Z} ]}
Cl
2
(
π
3
+
2
m
π
)
=
1.01494160
⋯
{\displaystyle {\text{Cl}}_{2}\left({\frac {\pi }{3}}+2m\pi \right)=1.01494160\cdots }
极小值点 :
θ
=
−
π
3
+
2
m
π
[
m
∈
Z
]
{\displaystyle \theta =-{\frac {\pi }{3}}+2m\pi \quad [m\in \mathbb {Z} ]}
Cl
2
(
−
π
3
+
2
m
π
)
=
−
1.01494160
⋯
{\displaystyle {\text{Cl}}_{2}\left(-{\frac {\pi }{3}}+2m\pi \right)=-1.01494160\cdots }
Cl
2
(
θ
+
2
m
π
)
=
Cl
2
(
θ
)
{\displaystyle {\text{Cl}}_{2}(\theta +2m\pi )={\text{Cl}}_{2}(\theta )}
Cl
2
(
−
θ
)
=
−
Cl
2
(
θ
)
{\displaystyle {\text{Cl}}_{2}(-\theta )=-{\text{Cl}}_{2}(\theta )}
[ 1] .
B
2
n
−
1
(
x
)
=
2
(
−
1
)
n
(
2
n
−
1
)
!
(
2
π
)
2
n
−
1
∑
k
=
1
∞
sin
2
π
k
x
k
2
n
−
1
{\displaystyle B_{2n-1}(x)={\frac {2(-1)^{n}(2n-1)!}{(2\pi )^{2n-1}}}\,\sum _{k=1}^{\infty }{\frac {\sin 2\pi kx}{k^{2n-1}}}}
B
2
n
(
x
)
=
2
(
−
1
)
n
−
1
(
2
n
)
!
(
2
π
)
2
n
∑
k
=
1
∞
cos
2
π
k
x
k
2
n
{\displaystyle B_{2n}(x)={\frac {2(-1)^{n-1}(2n)!}{(2\pi )^{2n}}}\,\sum _{k=1}^{\infty }{\frac {\cos 2\pi kx}{k^{2n}}}}
Sl
2
m
(
θ
)
=
(
−
1
)
m
−
1
(
2
π
)
2
m
2
(
2
m
)
!
B
2
m
(
θ
2
π
)
{\displaystyle {\text{Sl}}_{2m}(\theta )={\frac {(-1)^{m-1}(2\pi )^{2m}}{2(2m)!}}B_{2m}\left({\frac {\theta }{2\pi }}\right)}
Sl
2
m
−
1
(
θ
)
=
(
−
1
)
m
(
2
π
)
2
m
−
1
2
(
2
m
−
1
)
!
B
2
m
−
1
(
θ
2
π
)
{\displaystyle {\text{Sl}}_{2m-1}(\theta )={\frac {(-1)^{m}(2\pi )^{2m-1}}{2(2m-1)!}}B_{2m-1}\left({\frac {\theta }{2\pi }}\right)}
其中:
B
n
(
x
)
=
∑
j
=
0
n
(
n
j
)
B
j
x
n
−
j
{\displaystyle B_{n}(x)=\sum _{j=0}^{n}{\binom {n}{j}}B_{j}x^{n-j}}
Sl
1
(
θ
)
=
π
2
−
θ
2
{\displaystyle {\text{Sl}}_{1}(\theta )={\frac {\pi }{2}}-{\frac {\theta }{2}}}
Sl
2
(
θ
)
=
π
2
6
−
π
θ
2
+
θ
2
4
{\displaystyle {\text{Sl}}_{2}(\theta )={\frac {\pi ^{2}}{6}}-{\frac {\pi \theta }{2}}+{\frac {\theta ^{2}}{4}}}
Sl
3
(
θ
)
=
π
2
θ
6
−
π
θ
2
4
+
θ
3
12
{\displaystyle {\text{Sl}}_{3}(\theta )={\frac {\pi ^{2}\theta }{6}}-{\frac {\pi \theta ^{2}}{4}}+{\frac {\theta ^{3}}{12}}}
Sl
4
(
θ
)
=
π
4
90
−
π
2
θ
2
12
+
π
θ
3
12
−
θ
4
48
{\displaystyle {\text{Sl}}_{4}(\theta )={\frac {\pi ^{4}}{90}}-{\frac {\pi ^{2}\theta ^{2}}{12}}+{\frac {\pi \theta ^{3}}{12}}-{\frac {\theta ^{4}}{48}}}
C
l
2
:=
−
(
1
/
2
∗
I
)
∗
(
p
o
l
y
l
o
g
(
2
,
e
x
p
(
I
∗
ϕ
)
)
−
p
o
l
y
l
o
g
(
2
,
e
x
p
(
−
I
∗
ϕ
)
)
)
{\displaystyle Cl2:=-(1/2*I)*(polylog(2,exp(I*\phi ))-polylog(2,exp(-I*\phi )))}
^ Lu and Perez, 1992,
Adamchik, Viktor. S. Contributions to the Theory of the Barnes Function. arXiv:math/0308086v1 .
Clausen, Thomas. Über die Function sin φ + (1/22 ) sin 2φ + (1/32 ) sin 3φ + etc. . Journal für die reine und angewandte Mathematik . 1832, 8 : 298–300 [2015-03-07 ] . ISSN 0075-4102 . (原始内容存档 于2013-10-04).
Wood, Van E. Efficient calculation of Clausen's integral . Math. Comp. 1968, 22 (104): 883–884. MR 0239733 . doi:10.1090/S0025-5718-1968-0239733-9 .
Leonard Lewin, (Ed.). Structural Properties of Polylogarithms (1991) American Mathematical Society, Providence, RI. ISBN 0-8218-4532-2
Kölbig, Kurt Siegfried. Chebyshev coefficients for the Clausen function Cl2 (x). J. Comput. Appl. Math. 1995, 64 (3): 295–297. MR 1365432 . doi:10.1016/0377-0427(95)00150-6 .
Borwein, Jonathan M.; Straub, Armin. Relations for Nielsen Polylogarithms (PDF) . [2015-03-07 ] . (原始内容 (PDF) 存档于2013-12-12).
Borwein, Jonathan M.; Bradley, David M.; Crandall, Richard E. Computational Strategies for the Riemann Zeta Function (PDF) . J. Comp. App. Math. 2000, 121 : 247–296 [2015-03-07 ] . MR 1780051 . doi:10.1016/s0377-0427(00)00336-8 . (原始内容存档 (PDF) 于2006-09-25).
Kalmykov, Mikahil Yu.; Sheplyakov, A. LSJK - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine integral. Comput. Phys. Comm. 2005, 172 : 45–59. doi:10.1016/j.cpc.2005.04.013 .
Mathar, R. J. A C99 implementation of the Clausen sums. arXiv:1309.7504 .
Lu, Hung Jung; Perez, Christopher A. Massless one-loop scalar three-point integral and associated Clausen, Glaisher, and L-functions (PDF) . 1992 [2015-03-07 ] . (原始内容存档 (PDF) 于2015-09-24).