跳转到内容

格拉斯曼数

本页使用了标题或全文手工转换
维基百科,自由的百科全书

数学物理学中,格拉斯曼数(又称反交换数)是一种用于狄拉克场路径积分表示的数学架构。格拉斯曼数是以德国学者赫尔曼·格拉斯曼命名的。

性质

[编辑]

各格拉斯曼变数均与代数的实数元无关,它们之间互成反交换关系,但与一般数间则为交换关系:

需要注意的是,此算符的平方为零:

由于,所以

为了能让费米子也有路径积分,格拉斯曼数的积分需要有以下特性:

  • 线性

因此格拉斯曼量的积分有以下的规定:

所以结论为任何格拉斯曼数的微分及积分都是相同的。

量子场论路径积分表述中,在描述费米子反交换场时,需要用到以下含格拉斯曼量的高斯积分

其中矩阵

由格拉斯曼数集合所生成的代数格拉斯曼代数。由个线性独立的格拉斯曼数生成的代数,其维度

格拉斯曼代数是超交换代数的原型。超交换代数还可以分成偶变量与奇变量,因此可以满足分层的交换律(特别是奇变量为反交换)。

外代数

[编辑]

格拉斯曼代数是生成元所张成的矢量空间外代数。外代数的定义与基底的选择无关。

矩阵表示

[编辑]

格拉斯曼数都能以矩阵形式表示。例如,已知一格拉斯曼代数,是由两个格拉斯曼数所生成。这些格拉斯曼数可用4×4矩阵表示:

一般来说,由n个生成元生成的格拉斯曼代数,可用的正方形矩阵表示。在物理上,这些矩阵可被视为升算符,作用对象为占位数基底中n个费米子的希尔伯特空间。由于每个费米子的占位数皆为0或1,因此共有种基底态。在数学上,这些矩阵可被视为线性算符,对应与格拉斯曼代数自身的左外乘法。

应用

[编辑]

量子场论中,格拉斯曼数为反交换算符的“经典类比”。它们用于定义费米子场路径积分,因此需要为格拉斯曼数的积分下定义,这种积分又叫别列津积分

格拉斯曼数在为超流形(或超空间)下定义时有重要用途,此时它们被用作“反交换坐标”。

另见

[编辑]

参考资料

[编辑]