暗氧
外观
暗氧(英语:Dark Oxygen)是指通过不涉及依赖光的含氧光合作用的过程产生分子氧(O2)。因此,此名称所使用的“暗”意义,与“生物暗物质”(例如)一词中所使用的“暗”意义不同,前者表示科学评估的晦涩不明,而非光度学上的意义。虽然地球上大部分的氧是由植物和光合作用活跃的微生物透过光合作用产生的,但暗氧是透过各种非生物和生物过程产生的,并可能在黑暗、缺氧的环境中支持有氧新陈代谢。
非生物制造
[编辑]暗氧的非生物制造可透过几种机制发生,例如:
- 水的辐解:该过程通常发生在黑暗的地质生态系统中,例如含水层,周围岩石中放射性元素的衰变导致水分子分解,产生氧[1]。
- 表面结合自由基的氧化作用:在石英等含矽矿物上,表面结合的自由基会发生氧化作用,进而产生氧[2][3][4]。
除了直接形成氧外,这些过程通常会产生活性氧类(ROS),例如氢氧自由基(OH•)、超氧自由基(O2•-) 以及过氧化氢(H2O2)。这些活性氧类可以透过超氧化物歧化酶和过氧化氢酶等酵素,以生物方式转换成氧和水,或透过与亚铁和其他还原金属的反应,以非生物方式转换成氧和水[5][6]。
生物制造
[编辑]暗氧的生物制造由微生物透过不同的微生物过程进行,包括
- 亚氯酸盐分解:这包括将亚氯酸盐(ClO2-)分解成 O2 和氯离子[7]。
- 一氧化氮分解:这包括将一氧化氮(NO)分解成 O2 和氮气(N2)或一氧化二氮(N2O)[8][9][10]。
- 透过甲烷菌素裂解水分子:甲烷菌素可溶解水分子以产生 O2[11]。
这些过程使微生物群落能够在缺氧的环境中维持有氧新陈代谢。
实验证据
[编辑]最近的研究提供了在各种地质和次表层环境中产生暗氧的证据:
- 海底环境:一项针对深海海底锰结核的研究提出了非生物暗氧产量[13]。推测的机制是电解,因为在结核表面记录到电压。然而,并未测量到足以分裂水的电压,电解的能量来源不明,而且先前在同一区域进行的实验也未发现任何产氧的证据[14][15][16][17][18]。
影响
[编辑]尽管暗氧产生的途径多样化,传统上仍被认为在地球系统中微不足道。最近的证据显示,在黑暗、显然缺氧的环境中,氧的产生与消耗规模远大于先前的想像,对全球生物地球化学循环造成影响[19][20]。
参考资料
[编辑]- ^ Das, Soumya. Critical Review of Water Radiolysis Processes, Dissociation Products, and Possible Impacts on the Local Environment: A Geochemist. Australian Journal of Chemistry. 2013, 66 (5): 522. ISSN 0004-9425. doi:10.1071/CH13012 (英语).
- ^ He, Hongping; Wu, Xiao; Xian, Haiyang; Zhu, Jianxi; Yang, Yiping; Lv, Ying; Li, Yiliang; Konhauser, Kurt O. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nature Communications. 2021-11-16, 12 (1): 6611. Bibcode:2021NatCo..12.6611H. ISSN 2041-1723. PMC 8595356 . PMID 34785682. doi:10.1038/s41467-021-26916-2 (英语).
- ^ He, Hongping; Wu, Xiao; Zhu, Jianxi; Lin, Mang; Lv, Ying; Xian, Haiyang; Yang, Yiping; Lin, Xiaoju; Li, Shan; Li, Yiliang; Teng, H. Henry; Thiemens, Mark H. A mineral-based origin of Earth's initial hydrogen peroxide and molecular oxygen. Proceedings of the National Academy of Sciences. 2023-03-28, 120 (13): e2221984120. Bibcode:2023PNAS..12021984H. ISSN 0027-8424. PMC 10068795 . PMID 36940327. doi:10.1073/pnas.2221984120 (英语).
- ^ Stone, Jordan; Edgar, John O.; Gould, Jamie A.; Telling, Jon. Tectonically-driven oxidant production in the hot biosphere. Nature Communications. 2022-08-08, 13 (1): 4529. Bibcode:2022NatCo..13.4529S. ISSN 2041-1723. PMC 9360021 . PMID 35941147. doi:10.1038/s41467-022-32129-y (英语).
- ^ Sutherland, Kevin M.; Hemingway, Jordon D.; Johnston, David T. The influence of reactive oxygen species on "respiration" isotope effects. Geochimica et Cosmochimica Acta. May 2022, 324: 86–101. Bibcode:2022GeCoA.324...86S. doi:10.1016/j.gca.2022.02.033 (英语).
- ^ Xu, Jie; Sahai, Nita; Eggleston, Carrick M.; Schoonen, Martin A.A. Reactive oxygen species at the oxide/water interface: Formation mechanisms and implications for prebiotic chemistry and the origin of life. Earth and Planetary Science Letters. February 2013, 363: 156–167. Bibcode:2013E&PSL.363..156X. doi:10.1016/j.epsl.2012.12.008 (英语).
- ^ Xu, Jianlin; Logan, Bruce E. Measurement of chlorite dismutase activities in perchlorate respiring bacteria. Journal of Microbiological Methods. August 2003, 54 (2): 239–247. PMID 12782379. doi:10.1016/S0167-7012(03)00058-7 (英语).
- ^ Ettwig, Katharina F.; Speth, Daan R.; Reimann, Joachim; Wu, Ming L.; Jetten, Mike S. M.; Keltjens, Jan T. Bacterial oxygen production in the dark. Frontiers in Microbiology. 2012, 3: 273. ISSN 1664-302X. PMC 3413370 . PMID 22891064. doi:10.3389/fmicb.2012.00273 .
- ^ Kraft, Beate; Jehmlich, Nico; Larsen, Morten; Bristow, Laura A.; Könneke, Martin; Thamdrup, Bo; Canfield, Donald E. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science. 2022-01-07, 375 (6576): 97–100. Bibcode:2022Sci...375...97K. ISSN 0036-8075. PMID 34990242. doi:10.1126/science.abe6733 (英语).
- ^ Murali, Ranjani; Pace, Laura A.; Sanford, Robert A.; Ward, L. M.; Lynes, Mackenzie M.; Hatzenpichler, Roland; Lingappa, Usha F.; Fischer, Woodward W.; Gennis, Robert B.; Hemp, James. Diversity and evolution of nitric oxide reduction in bacteria and archaea. Proceedings of the National Academy of Sciences. 2024-06-25, 121 (26): e2316422121. Bibcode:2024PNAS..12116422M. ISSN 0027-8424. PMC 11214002 . PMID 38900790. doi:10.1073/pnas.2316422121 (英语). 已忽略未知参数
|pmc-embargo-date=
(帮助) - ^ Dershwitz, Philip; Bandow, Nathan L.; Yang, Junwon; Semrau, Jeremy D.; McEllistrem, Marcus T.; Heinze, Rafael A.; Fonseca, Matheus; Ledesma, Joshua C.; Jennett, Jacob R.; DiSpirito, Ana M.; Athwal, Navjot S.; Hargrove, Mark S.; Bobik, Thomas A.; Zischka, Hans; DiSpirito, Alan A. Parales, Rebecca E. , 编. Oxygen Generation via Water Splitting by a Novel Biogenic Metal Ion-Binding Compound. Applied and Environmental Microbiology. 2021-06-25, 87 (14): e0028621. Bibcode:2021ApEnM..87E.286D. ISSN 0099-2240. PMC 8231713 . PMID 33962982. doi:10.1128/AEM.00286-21 (英语).
- ^ Ruff, S. Emil; Humez, Pauline; de Angelis, Isabella Hrabe; Diao, Muhe; Nightingale, Michael; Cho, Sara; Connors, Liam; Kuloyo, Olukayode O.; Seltzer, Alan; Bowman, Samuel; Wankel, Scott D.; McClain, Cynthia N.; Mayer, Bernhard; Strous, Marc. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nature Communications. 2023-06-13, 14 (1): 3194. Bibcode:2023NatCo..14.3194R. ISSN 2041-1723. PMC 10264387 . PMID 37311764. doi:10.1038/s41467-023-38523-4 (英语).
- ^ Sweetman, Andrew K.; Smith, Alycia J.; de Jonge, Danielle S. W.; Hahn, Tobias; Schroedl, Peter; Silverstein, Michael; Andrade, Claire; Edwards, R. Lawrence; Lough, Alastair J. M.; Woulds, Clare; Homoky, William B.; Koschinsky, Andrea; Fuchs, Sebastian; Kuhn, Thomas; Geiger, Franz. Evidence of dark oxygen production at the abyssal seafloor. Nature Geoscience. August 2024, 17 (8): 737–739. ISSN 1752-0894. doi:10.1038/s41561-024-01480-8 (英语).
- ^ Smith, K. L.; Laver, M. B.; Brown, N. O. Sediment community oxygen consumption and nutrient exchange in the central and eastern North Pacific1. Limnology and Oceanography. 1983, 28 (5): 882–898. ISSN 0024-3590. doi:10.4319/lo.1983.28.5.0882 (英语).
- ^ Khripounoff, Alexis; Caprais, Jean-Claude; Crassous, Philippe; Etoubleau, Joël. Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5,000-m depth. Limnology and Oceanography. 2006, 51 (5): 2033–2041. doi:10.4319/lo.2006.51.5.2033 (英语).
- ^ Vonnahme, T. R.; Molari, M.; Janssen, F.; Wenzhöfer, F.; Haeckel, M.; Titschack, J.; Boetius, A. Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Science Advances. 2020, 6 (18). ISSN 2375-2548. PMC 7190355 . PMID 32426478. doi:10.1126/sciadv.aaz5922 (英语).
- ^ Stratmann, Tanja; Voorsmit, Ilja; Gebruk, Andrey; Brown, Alastair; Purser, Autun; Marcon, Yann; Sweetman, Andrew K.; Jones, Daniel O. B.; van Oevelen, Dick. Recovery of Holothuroidea population density, community composition, and respiration activity after a deep‐sea disturbance experiment. Limnology and Oceanography. 2018, 63 (5): 2140–2153. ISSN 0024-3590. doi:10.1002/lno.10929 (英语).
- ^ An, Sung-Uk; Baek, Ju-Wook; Kim, Sung-Han; Baek, Hyun-Min; Lee, Jae Seong; Kim, Kyung-Tae; Kim, Kyeong Hong; Hyeong, Kiseong; Chi, Sang-Bum; Park, Chan Hong. Regional differences in sediment oxygen uptake rates in polymetallic nodule and co-rich polymetallic crust mining areas of the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers. 2024, 207: 104295. ISSN 0967-0637. doi:10.1016/j.dsr.2024.104295.
- ^ Sweetman, Andrew K.; Smith, Alycia J.; de Jonge, Danielle S. W.; Hahn, Tobias; Schroedl, Peter; Silverstein, Michael; Andrade, Claire; Edwards, R. Lawrence; Lough, Alastair J. M.; Woulds, Clare; Homoky, William B.; Koschinsky, Andrea; Fuchs, Sebastian; Kuhn, Thomas; Geiger, Franz. Evidence of dark oxygen production at the abyssal seafloor. Nature Geoscience. August 2024, 17 (8): 737–739. ISSN 1752-0894. doi:10.1038/s41561-024-01480-8 (英语).
- ^ Ruff, S. Emil; Humez, Pauline; de Angelis, Isabella Hrabe; Diao, Muhe; Nightingale, Michael; Cho, Sara; Connors, Liam; Kuloyo, Olukayode O.; Seltzer, Alan; Bowman, Samuel; Wankel, Scott D.; McClain, Cynthia N.; Mayer, Bernhard; Strous, Marc. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nature Communications. 2023-06-13, 14 (1). ISSN 2041-1723. PMC 10264387 . PMID 37311764. doi:10.1038/s41467-023-38523-4 (英语).