重對數律
外觀
在概率論中,重對數律(LIL)用來描述一個隨機漫步的振幅。其最早為Aleksandr Y. Khinchin在1924年所敘述[1];之後Andrey N. Kolmogorov在1929年給出了另一個敘述[2]。由於定理中出現了二重對數,故名。
內容
[編輯]令是一列獨立同分布的隨機變量,其期望為0,方差為1;且記,那麼:
其中「log」是自然對數,「lim sup」是上極限,「a.s.」是「幾乎必然」[3]。
參見
[編輯]參考文獻
[編輯]- ^ A. Khinchine. "Über einen Satz der Wahrscheinlichkeitsrechnung", Fundamenta Mathematica, 6:9-20, 1924. (The author's name is shown here in an alternate transliteration.)
- ^ A. Kolmogoroff. "Über das Gesetz des iterierten Logarithmus" (頁面存檔備份,存於網際網路檔案館). Mathematische Annalen, 101:126-135, 1929. (At the Göttinger DigitalisierungsZentrum web site (頁面存檔備份,存於網際網路檔案館))
- ^ Leo Breiman. Probability. Original edition published by Addison-Wesley, 1968; reprinted by Society for Industrial and Applied Mathematics, 1992. (See Sections 3.9, 12.9, and 12.10; Theorem 3.52 specifically.)