跳转到内容

粒子衰變

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是粒子衰變当前版本,由Kenny023留言 | 贡献编辑于2023年5月17日 (三) 10:00 (回退到由InternetArchiveBot討論)做出的修訂版本72629738)。这个网址是本页该版本的固定链接。

(差异) ←上一修订 | 最后版本 (差异) | 下一修订→ (差异)

粒子衰變是一基本粒子變成其他基本粒子的自發過程。在這個過程中,一基本粒子變成質量更輕的另一種基本粒子,及一中間粒子,例如μ子衰變中的W玻色子。這中間粒子隨即變成其他粒子。如果生成的粒子不穩定,那麼衰變過程還會繼續。

粒子衰變這種過程,與放射性衰變不一樣,後者為一不穩定的原子核,變成一更小的原子核,當中還伴隨着粒子或輻射的發射。

注意本條目使用自然單位,即

粒子壽命列表

[编辑]

所有數值均來自粒子數據小組

種類 名稱 符號 能量 (MeV) 平均壽命
輕子 電子 / 正電子 0.511
μ子 / 反μ子 105.6
τ子 / 反τ子 1777
介子 中性π介子 135
帶電π介子 139.6
重子 質子 / 反質子 938.2
中子 / 反中子 939.6
玻色子 W玻色子 80,400
Z玻色子 91,000

生還概率

[编辑]

把一粒子的平均壽命標記為,這樣粒子在時間t後仍生還(即未衰變)的概率為

其中
為該粒子的勞侖茲因子

衰變率

[编辑]

設一粒子質量為M,則衰變率可用下面的通用公式表示

其中
n為原衰變所生成的粒子數,
為連接始態與終態的不變矩陣上的元,
為相空間的元,及
為粒子i四維動量

相空間可由下式所得,

其中
為四維的狄拉克δ函數

三體衰變

[编辑]

作為例子,一粒子衰變成三粒子時的相空間元如下:

四維動量

[编辑]

一粒子的四維動量又叫其不變質量

一粒子的四維動量平方,定義為其能量平方與其三維動量平方間的差(注意從這開始,採用的單位都能滿足光速等於1這項條件):

兩粒子的四維動量平方為

四維動量守恆

[编辑]

在所有衰變及粒子相互作用中,四維動量都必須守恆,因此始態pi 與終態pf 的關係為

在二體衰變中

[编辑]

設母粒子質量為M,衰變成兩粒子(標記為12),那麼四維動量的守恆條件則為

整理可得,

然後取左右兩邊的平方

現在要用的正是四維動量的定義——方程(1),展開各p2

若進入母粒子的靜止系,則

  • ,及

將上述兩式代入方程(2)得:

整理後得粒子1於母粒子靜止系中的能量公式,


同樣地,粒子2在母粒子在靜止系中的能量為

可得

先把 代入方程(3):

的推導也一樣。

二體衰變

[编辑]
質心系中,看起來靜止的母粒子衰變成兩相同質量的粒子,造成它們在夾角為180°的情況下發射。
...而在實驗室系中,母粒子大概以接近光速的速度移動,因此所發射的兩粒子,其角度會與質心系的不一樣。

從兩個不同的參考系

[编辑]

在實驗室系中發射粒子的角度,與質心系時的關係由下式表示:

衰變率

[编辑]

設一母粒子質量為M ,衰變成兩粒子,標記為12。那麼在母粒子的靜止系中,

另外,用球座標表示則為

已知二體衰變的相空間元(見上文#衰變率一節,n=2),得母粒子參考系中的衰變率為:

另見

[编辑]

參考資料

[编辑]