RNA疫苗:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Mr.zhaolifo留言 | 贡献
→‎历史:​ 修補
Mr.zhaolifo留言 | 贡献
→‎作用机制:​ 修補
标签加入博客链接 可视化编辑
第28行: 第28行:


==作用机制==
==作用机制==
疫苗的目标是刺激适应性免疫系统产生精确针对该特定病原体的抗体。抗体所针对的病原体上的标记被称为抗原<ref>{{Cite journal|title=Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733686/|last=Batty|first=Cole J.|last2=Heise|first2=Mark T.|date=2021-2|journal=Advanced Drug Delivery Reviews|doi=10.1016/j.addr.2020.12.006|volume=169|pages=168–189|issn=0169-409X|pmc=7733686|pmid=33316346|last3=Bachelder|first3=Eric M.|last4=Ainslie|first4=Kristy M.}}</ref>。
与依靠抗原或[[减毒病毒]]刺激免疫系统产生[[免疫反应]]的传统疫苗不同,RNA疫苗本身并不含有抗原,而是以编码抗原的mRNA为主要成分。这些编码抗原的mRNA能在细胞内被轉译为抗原蛋白。RNA疫苗中的mRNA通常由[[固体脂质纳米粒]]等特殊载体包裹(也有部分研究使用病毒作为载体<ref>{{Cite journal|last=Huang|first=Tiffany T.|last2=Parab|first2=Shraddha|last3=Burnett|first3=Ryan|last4=Diago|first4=Oscar|last5=Ostertag|first5=Derek|last6=Hofman|first6=Florence M.|last7=Espinoza|first7=Fernando Lopez|last8=Martin|first8=Bryan|last9=Ibañez|first9=Carlos E.|last10=Kasahara|first10=Noriyuki|last11=Gruber|first11=Harry E.|date=February 2015|title=Intravenous Administration of Retroviral Replicating Vector, Toca 511, Demonstrates Therapeutic Efficacy in Orthotopic Immune-Competent Mouse Glioma Model|journal=Human Gene Therapy|volume=26|issue=2|pages=82–93|doi=10.1089/hum.2014.100|pmid=25419577|pmc=4326030|issn=1043-0342}}</ref><ref>{{Cite journal|last=Schultz-Cherry|first=Stacey|last2=Dybing|first2=Jody K.|last3=Davis|first3=Nancy L.|last4=Williamson|first4=Chad|last5=Suarez|first5=David L.|last6=Johnston|first6=Robert|last7=Perdue|first7=Michael L.|date=December 2000|title=Influenza Virus (A/HK/156/97) Hemagglutinin Expressed by an Alphavirus Replicon System Protects Chickens against Lethal Infection with Hong Kong-Origin H5N1 Viruses|journal=Virology|volume=278|issue=1|pages=55–59|doi=10.1006/viro.2000.0635|pmid=11112481|issn=0042-6822}}</ref><ref>{{Cite journal|last=Geisbert|first=Thomas W.|last2=Feldmann|first2=Heinz|date=November 2011|title=Recombinant Vesicular Stomatitis Virus–Based Vaccines Against Ebola and Marburg Virus Infections|journal=The Journal of Infectious Diseases|volume=204|issue=suppl_3|pages=S1075–S1081|doi=10.1093/infdis/jir349|pmid=21987744|pmc=3218670|issn=0022-1899}}</ref>),以保护脆弱的RNA分子并帮助RNA进入[[胞内|细胞内]]<ref name="PardiHogan2018">{{cite journal|title=mRNA vaccines — a new era in vaccinology|first1=Norbert|last2=Hogan|first2=Michael J.|journal=Nature Reviews Drug Discovery|issue=4|doi=10.1038/nrd.2017.243|year=2018|volume=17|pages=261–279|issn=1474-1776|last3=Porter|first3=Frederick W.|last4=Weissman|first4=Drew|last1=Pardi}}</ref>。通常来说,RNA疫苗发挥作用的步骤为:载体包裹的RNA注射到人体内、RNA进入细胞质、RNA转译为抗原蛋白、抗原蛋白被呈递至细胞表面或被分泌到细胞外引发免疫反应<ref name="JacksonKester2020">{{cite journal|last1=Jackson|first1=Nicholas A. C.|last2=Kester|first2=Kent E.|last3=Casimiro|first3=Danilo|last4=Gurunathan|first4=Sanjay|last5=DeRosa|first5=Frank|title=The promise of mRNA vaccines: a biotech and industrial perspective|journal=npj Vaccines|volume=5|issue=1|year=2020|issn=2059-0105|doi=10.1038/s41541-020-0159-8}}</ref>。


传统疫苗通过将抗原、减毒(弱化)病毒、灭活(死亡)病毒或重组抗原编码病毒载体(带有抗原转基因的无害载体病毒)注射到体内来刺激抗体反应。这些抗原和病毒是在体外制备和生长的<ref>{{Cite journal|title=SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900244/|last=Kyriakidis|first=Nikolaos C.|last2=López-Cortés|first2=Andrés|date=2021-02-22|journal=NPJ Vaccines|doi=10.1038/s41541-021-00292-w|volume=6|pages=28|issn=2059-0105|pmc=7900244|pmid=33619260|last3=González|first3=Eduardo Vásconez|last4=Grimaldos|first4=Alejandra Barreto|last5=Prado|first5=Esteban Ortiz}}</ref>。
目前有关RNA疫苗的主要研究方向是如何提高RNA疫苗的稳定性、如何提高mRNA进入细胞的效率、如何增加mRNA制造抗原蛋白的效率。目前来说,一般是通过对mRNA进行改造或改良载体成分来尝试解决以上问题。也有研究者提出,通过RNA疫苗自主扩增,能增加产生抗原的效率<ref name="FullerPhimister2020">{{cite journal|last1=Fuller|first1=Deborah H.|last2=Phimister|first2=Elizabeth G.|last3=Berglund|first3=Peter|title=Amplifying RNA Vaccine Development|journal=New England Journal of Medicine|volume=382|issue=25|year=2020|pages=2469–2471|issn=0028-4793|doi=10.1056/NEJMcibr2009737}}</ref>。此外,对于原病毒RNA所转译出来的抗原蛋白若有细胞毒性,也要在设计疫苗时修改mRNA序列。


与此相反,mRNA疫苗是将短命的<ref>{{Cite journal|title=Tools for translation: non-viral materials for therapeutic mRNA delivery|url=https://www.nature.com/articles/natrevmats201756|last=Hajj|first=Khalid A.|last2=Whitehead|first2=Kathryn A.|date=2017-09-12|journal=Nature Reviews Materials|issue=10|doi=10.1038/natrevmats.2017.56|volume=2|pages=1–17|language=en|issn=2058-8437}}</ref>病毒RNA序列的合成片段引入被接种者体内。这些mRNA片段通过吞噬作用被树突状细胞吸收。<ref>{{Cite journal|title=Developing mRNA-vaccine technologies|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597572/|last=Schlake|first=Thomas|last2=Thess|first2=Andreas|date=2012-11-01|journal=RNA Biology|issue=11|doi=10.4161/rna.22269|volume=9|pages=1319–1330|issn=1547-6286|pmc=3597572|pmid=23064118|last3=Fotin-Mleczek|first3=Mariola|last4=Kallen|first4=Karl-Josef}}</ref>树突状细胞利用其内部机器(核糖体)读取mRNA并产生mRNA所编码的病毒抗原。 <ref>{{Cite journal|title=Review the safety of Covid-19 mRNA vaccines: a review|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087878/|last=Anand|first=Pratibha|last2=Stahel|first2=Vincent P.|date=2021-05-01|journal=Patient Safety in Surgery|doi=10.1186/s13037-021-00291-9|volume=15|pages=20|issn=1754-9493|pmc=8087878|pmid=33933145}}</ref> 尽管非免疫细胞也有可能吸收疫苗mRNA,产生抗原,并在其表面显示抗原,但树突状细胞更容易吸收mRNA球体。<ref>{{Cite web|title=How do the new COVID-19 vaccines work?|url=https://scopeblog.stanford.edu/2020/12/22/how-do-the-new-covid-19-vaccines-work/|access-date=2021-11-10|date=2020-12-22|last=Goldman|first=Author Bruce|work=Scope|language=en-US}}</ref>mRNA片段在细胞质中翻译,不影响人体的基因组DNA,它单独位于细胞核中。<ref>{{Cite journal|title=mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection|url=https://www.mdpi.com/1422-0067/21/18/6582|last=Xu|first=Shuqin|last2=Yang|first2=Kunpeng|date=2020-01|journal=International Journal of Molecular Sciences|issue=18|doi=10.3390/ijms21186582|volume=21|pages=6582|language=en|last3=Li|first3=Rose|last4=Zhang|first4=Lu}}</ref>
RNA疫苗也有潜力用于[[癌症疫苗]]的开发<ref name="PardiHogan2018"/>。

一旦病毒抗原由宿主细胞产生,正常的适应性免疫系统过程就会随之进行。抗原被蛋白酶分解。I类和II类MHC分子然后附着在抗原上,并将其运送到细胞膜上,"激活 "树突状细胞。 一旦激活,树突状细胞迁移到淋巴结,在那里它们将抗原呈现给T细胞和B细胞。<ref>{{Cite book|chapter=mRNA Cancer Vaccines|last=Fiedler|editor-first=Wolfgang|last5=Heidenreich|first5=Regina|last4=Rauch|first4=Susanne|last3=Lutz|first3=Johannes|last2=Lazzaro|first2=Sandra|first=Katja|title=Current Strategies in Cancer Gene Therapy|language=en|doi=10.1007/978-3-319-42934-2_5|pages=61–85|isbn=978-3-319-42934-2|location=Cham|date=2016|publisher=Springer International Publishing|url=https://doi.org/10.1007/978-3-319-42934-2_5|series=Recent Results in Cancer Research|editor-last=Walther}}</ref>


==优点==
==优点==
RNA疫苗具有成本低、生产效率高的优点<ref name="PHG1">{{cite web|title=RNA vaccines: an introduction|url=https://www.phgfoundation.org/briefing/rna-vaccines|accessdate=2020-11-18|author=PHG Foundation|date=2019|website=[[剑桥大学|University of Cambridge]]|archive-url=https://web.archive.org/web/20201120145535/https://www.phgfoundation.org/briefing/rna-vaccines|archive-date=2020-11-20|dead-url=no}}</ref><ref name="NAT1">{{cite journal|title=mRNA vaccines — a new era in vaccinology|first1=Norbert|last2=Hogan|first2=Michael J.|date=April 2018|journal=Nature Reviews Drug Discovery|issue=4|doi=10.1038/nrd.2017.243|volume=17|pages=261–279|pmc=5906799|pmid=29326426|last3=Porter|first3=Frederick W.|last4=Weissman|first4=Drew|last1=Pardi}}</ref>。因为生产周期短,不容易出现[[微生物]]污染问题。此外,因为RNA疫苗的生产不需要使用有毒化学品,也可以做到无细胞生产,使RNA疫苗理论上具有相较传统疫苗更高的安全性<ref name="PardiHogan2018"/>。
RNA疫苗具有成本低、生产效率高的优点<ref name="PHG1">{{cite web|title=RNA vaccines: an introduction|url=https://www.phgfoundation.org/briefing/rna-vaccines|accessdate=2020-11-18|author=PHG Foundation|date=2019|website=[[剑桥大学|University of Cambridge]]|archive-url=https://web.archive.org/web/20201120145535/https://www.phgfoundation.org/briefing/rna-vaccines|archive-date=2020-11-20|dead-url=no}}</ref><ref name="NAT1">{{cite journal|title=mRNA vaccines — a new era in vaccinology|first1=Norbert|last2=Hogan|first2=Michael J.|date=April 2018|journal=Nature Reviews Drug Discovery|issue=4|doi=10.1038/nrd.2017.243|volume=17|pages=261–279|pmc=5906799|pmid=29326426|last3=Porter|first3=Frederick W.|last4=Weissman|first4=Drew|last1=Pardi}}</ref>。因为生产周期短,不容易出现[[微生物]]污染问题。此外,因为RNA疫苗的生产不需要使用有毒化学品,也可以做到无细胞生产,使RNA疫苗理论上具有相较传统疫苗更高的安全性<ref name="PardiHogan2018">{{cite journal|title=mRNA vaccines — a new era in vaccinology|first1=Norbert|last2=Hogan|first2=Michael J.|journal=Nature Reviews Drug Discovery|issue=4|doi=10.1038/nrd.2017.243|year=2018|volume=17|pages=261–279|issn=1474-1776|last3=Porter|first3=Frederick W.|last4=Weissman|first4=Drew|last1=Pardi}}</ref>。


==缺点==
==缺点==

2021年11月10日 (三) 14:12的版本

RNA疫苗的作用机理简图

mRNA疫苗是一种利用称为信使RNA(mRNA)的分子副本来产生免疫反应的疫苗。[1]疫苗将编码抗原的mRNA分子送入免疫细胞,免疫细胞使用设计好的mRNA作为模板来构建通常由病原体(如病毒)或癌细胞产生的外来蛋白质。这些蛋白质分子刺激适应性免疫反应,教导身体识别并摧毁相应的病原体或癌细胞。[2] mRNA是由封装在脂质纳米颗粒中的RNA共同组成,保护RNA链并帮助其吸收进入细胞。[3][4]

反应原性,即疫苗产生不良反应的倾向,与传统的非RNA疫苗相似。[5] 容易产生自身免疫反应的人可能会对信使RNA疫苗产生不良反应。[6]与传统疫苗相比,mRNA疫苗的优点是易于设计,生产速度快,成本低,能诱导细胞免疫和体液免疫,并且不与基因组DNA相互作用。 [7] 虽然一些信使RNA疫苗,如辉瑞生物技术公司的COVID-19疫苗,有在分发前需要超低温储存的缺点,[8] 但其他mRNA疫苗,如Moderna、CureVac和Walvax COVID-19疫苗,没有这种要求。[9][10]

在RNA疗法中,信使RNA疫苗作为COVID-19疫苗引起了相当大的兴趣。[11] 2020年12月,辉瑞生物技术公司和Moderna公司的基于mRNA的COVID-19疫苗获得批准。12月2日,英国药品和保健品管理局(MHRA)成为第一个批准mRNA疫苗的药品监管机构,授权辉瑞-生物技术公司的疫苗广泛使用。[12][13][14] 12月11日,美国食品和药物管理局(FDA)为辉瑞生物技术公司的疫苗颁发了紧急使用授权[15][16],一周后同样批准了Moderna的疫苗。[17][18]

历史

早期研究

1989年发表了第一篇成功将脂质体纳米颗粒中的mRNA转染到细胞中的文章。[19][20]一年后,无保护的mRNA被注射到小鼠的肌肉中。[21] 这些研究首次证明体外转录的mRNA能够传递遗传信息,在活细胞组织中产生蛋白质并导致信使RNA疫苗的概念提出。[22]

1993年,脂质体包裹的mRNA被证明可以刺激小鼠的T细胞。[23][24] 次年,通过包括病毒抗原和复制酶编码基因,开发了自我复制的mRNA。[25] 这种方法在小鼠身上引起了针对病毒病原体的体液和细胞免疫反应。 第二年,编码肿瘤抗原的mRNA被证明在小鼠身上引起了针对癌细胞的类似免疫反应。[26]

发展

第一个使用转染了编码肿瘤抗原的mRNA的体外树突状细胞的人体临床试验(治疗性癌症mRNA疫苗)于2001年开始。[27]四年后,报道了成功使用改性核苷作为在细胞内运输mRNA而不引起身体防御系统的方法。[28] 2008年报道了直接注射到体内对抗癌细胞的mRNA疫苗的临床试验结果。[29]

2008年成立了BioNTech公司,2010年成立了Moderna公司,以开发mRNA生物技术。[30] 美国研究机构DARPA在此时启动了生物技术研究计划ADEPT,为美国军队开发新兴技术。[31]该机构认识到核酸技术在防御大流行病方面的潜力,并开始在该领域进行投资。

DARPA的拨款被视为一张信任票,反过来鼓励其他政府机构和私人投资者投资于mRNA技术。[32]

2013年开始了第一个使用mRNA疫苗对付传染病原体(狂犬病)的人体临床试验。[33] 在接下来的几年里,开始了针对其他一些病毒的mRNA疫苗的临床试验。已经研究了用于人体的mRNA疫苗,如流感、寨卡病毒、巨细胞病毒和基孔肯雅病毒等传染病。[34]

加速

COVID-19大流行,以及2020年初对致病病毒SARS-CoV-2的测序,导致了第一批获批的mRNA疫苗的快速发展。[35] BioNTech和Moderna在同年12月获得了其基于mRNA的COVID-19疫苗的批准。12月2日,在其最后的八周试验后七天,英国药品和保健品管理局成为历史上第一个批准mRNA疫苗的全球药品监管机构,对辉瑞生物技术公司的BNT162b2 COVID-19疫苗给予了紧急授权,以供广泛使用。[36] [37]12月11日,FDA对辉瑞-生物技术公司的COVID-19疫苗给予紧急使用授权,一周后对Moderna的COVID-19疫苗也给予了类似批准。[38]

作用机制

疫苗的目标是刺激适应性免疫系统产生精确针对该特定病原体的抗体。抗体所针对的病原体上的标记被称为抗原[39]

传统疫苗通过将抗原、减毒(弱化)病毒、灭活(死亡)病毒或重组抗原编码病毒载体(带有抗原转基因的无害载体病毒)注射到体内来刺激抗体反应。这些抗原和病毒是在体外制备和生长的[40]

与此相反,mRNA疫苗是将短命的[41]病毒RNA序列的合成片段引入被接种者体内。这些mRNA片段通过吞噬作用被树突状细胞吸收。[42]树突状细胞利用其内部机器(核糖体)读取mRNA并产生mRNA所编码的病毒抗原。 [43] 尽管非免疫细胞也有可能吸收疫苗mRNA,产生抗原,并在其表面显示抗原,但树突状细胞更容易吸收mRNA球体。[44]mRNA片段在细胞质中翻译,不影响人体的基因组DNA,它单独位于细胞核中。[45]

一旦病毒抗原由宿主细胞产生,正常的适应性免疫系统过程就会随之进行。抗原被蛋白酶分解。I类和II类MHC分子然后附着在抗原上,并将其运送到细胞膜上,"激活 "树突状细胞。 一旦激活,树突状细胞迁移到淋巴结,在那里它们将抗原呈现给T细胞和B细胞。[46]

优点

RNA疫苗具有成本低、生产效率高的优点[47][48]。因为生产周期短,不容易出现微生物污染问题。此外,因为RNA疫苗的生产不需要使用有毒化学品,也可以做到无细胞生产,使RNA疫苗理论上具有相较传统疫苗更高的安全性[49]

缺点

由于RNA疫苗结构相对来说不十分稳定,一般需要0°C以下的低温储存,储存耗費成本較高、时间亦较短,使RNA疫苗的临床应用受到一定限制[50][51][52]

参见

  • DNA疫苗
  • BNT162b2,首款完成開發及投入應用的RNA疫苗,用于预防2019冠状病毒病
  • MRNA-1273,繼「BNT162b2」後另一款预防2019冠状病毒病的RNA疫苗
  • 癌症疫苗

参考文献

  1. ^ Park, Kyung Soo; Sun, Xiaoqi; Aikins, Marisa E.; Moon, James J. Non-viral COVID-19 vaccine delivery systems. Advanced Drug Delivery Reviews. 2021-2, 169: 137–151. ISSN 0169-409X. PMC 7744276可免费查阅. PMID 33340620. doi:10.1016/j.addr.2020.12.008. 
  2. ^ Park, Kyung Soo; Sun, Xiaoqi; Aikins, Marisa E.; Moon, James J. Non-viral COVID-19 vaccine delivery systems. Advanced Drug Delivery Reviews. 2021-2, 169: 137–151. ISSN 0169-409X. PMC 7744276可免费查阅. PMID 33340620. doi:10.1016/j.addr.2020.12.008. 
  3. ^ Verbeke, Rein; Lentacker, Ine; De Smedt, Stefaan; Dewitte, Heleen. Three decades of messenger RNA vaccine development. NANO TODAY. 2019, 28. ISSN 1748-0132. doi:10.1016/j.nantod.2019.100766. 
  4. ^ Kowalski, Piotr S.; Rudra, Arnab; Miao, Lei; Anderson, Daniel G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy. 2019-04-10, 27 (4): 710–728. ISSN 1525-0016. PMC 6453548可免费查阅. PMID 30846391. doi:10.1016/j.ymthe.2019.02.012. 
  5. ^ Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery. 2018-04, 17 (4): 261–279. ISSN 1474-1784. doi:10.1038/nrd.2017.243 (英语). 
  6. ^ Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery. 2018-04, 17 (4): 261–279. ISSN 1474-1784. doi:10.1038/nrd.2017.243 (英语). 
  7. ^ RNA vaccines: an introduction. PHG Foundation. [2021-11-10] (英语). 
  8. ^ Park, Kyung Soo; Sun, Xiaoqi; Aikins, Marisa E.; Moon, James J. Non-viral COVID-19 vaccine delivery systems. Advanced Drug Delivery Reviews. 2021-2, 169: 137–151. ISSN 0169-409X. PMC 7744276可免费查阅. PMID 33340620. doi:10.1016/j.addr.2020.12.008. 
  9. ^ Reuters. Mexico to start late-stage clinical trial for China's mRNA COVID-19 vaccine. Reuters. 2021-05-11 [2021-11-10] (英语). 
  10. ^ Crommelin, Daan J.A.; Anchordoquy, Thomas J.; Volkin, David B.; Jiskoot, Wim; Mastrobattista, Enrico. Addressing the Cold Reality of mRNA Vaccine Stability. Journal of Pharmaceutical Sciences. 2021-3, 110 (3): 997–1001. ISSN 0022-3549. PMC 7834447可免费查阅. PMID 33321139. doi:10.1016/j.xphs.2020.12.006. 
  11. ^ Park, Kyung Soo; Sun, Xiaoqi; Aikins, Marisa E.; Moon, James J. Non-viral COVID-19 vaccine delivery systems. Advanced Drug Delivery Reviews. 2021-2, 169: 137–151. ISSN 0169-409X. PMC 7744276可免费查阅. PMID 33340620. doi:10.1016/j.addr.2020.12.008. 
  12. ^ UK authorises Pfizer/BioNTech COVID-19 vaccine. GOV.UK. [2021-11-10] (英语). 
  13. ^ UK approves Pfizer/BioNTech Covid vaccine for rollout next week. the Guardian. 2020-12-02 [2021-11-10] (英语). 
  14. ^ Conditions of Authorisation for COVID-19 Vaccine Pfizer/BioNTech (Regulation 174). GOV.UK. [2021-11-10] (英语). 
  15. ^ Commissioner, Office of the. FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine. FDA. 2020-12-14 [2021-11-10] (英语). 
  16. ^ Sara E. Oliver. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine — United States, December 2020 (PDF). Morbidity and Mortality Weekly Report 1922 MMWR / December 18, 2020 / Vol. 69 / No. 50US Department of Health and Human Services/Centers for Disease Control and Prevention The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine — United States, December 2020. 
  17. ^ Sara E. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Moderna COVID-19 Vaccine — United States, December 2020 (PDF). The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Moderna COVID-19 Vaccine — United States, December 2020. 
  18. ^ Commissioner, Office of the. FDA Takes Additional Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for Second COVID-19 Vaccine. FDA. 2020-12-21 [2021-11-10] (英语). 
  19. ^ Xu, Shuqin; Yang, Kunpeng; Li, Rose; Zhang, Lu. mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. International Journal of Molecular Sciences. 2020-09-09, 21 (18): 6582. ISSN 1422-0067. PMC 7554980可免费查阅. PMID 32916818. doi:10.3390/ijms21186582. 
  20. ^ Malone, R W; Felgner, P L; Verma, I M. Cationic liposome-mediated RNA transfection.. Proceedings of the National Academy of Sciences of the United States of America. 1989-08, 86 (16): 6077–6081. ISSN 0027-8424. PMID 2762315. 
  21. ^ Wolff, Jon A.; Malone, Robert W.; Williams, Phillip; Chong, Wang; Acsadi, Gyula; Jani, Agnes; Felgner, Philip L. Direct Gene Transfer into Mouse Muscle in Vivo. Science. 1990-03-23, 247 (4949): 1465–1468. doi:10.1126/science.1690918. 
  22. ^ Xu, Shuqin; Yang, Kunpeng; Li, Rose; Zhang, Lu. mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. International Journal of Molecular Sciences. 2020-09-09, 21 (18): 6582. ISSN 1422-0067. PMC 7554980可免费查阅. PMID 32916818. doi:10.3390/ijms21186582. 
  23. ^ Xu, Shuqin; Yang, Kunpeng; Li, Rose; Zhang, Lu. mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. International Journal of Molecular Sciences. 2020-09-09, 21 (18): 6582. ISSN 1422-0067. PMC 7554980可免费查阅. PMID 32916818. doi:10.3390/ijms21186582. 
  24. ^ Pascolo, Steve. Messenger RNA-based vaccines. Expert Opinion on Biological Therapy. 2004-08-01, 4 (8): 1285–1294. ISSN 1471-2598. PMID 15268662. doi:10.1517/14712598.4.8.1285. 
  25. ^ Zhou, X.; Berglund, P.; Rhodes, G.; Parker, S. E.; Jondal, M.; Liljeström, P. Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine. 1994-12, 12 (16): 1510–1514. ISSN 0264-410X. PMID 7879415. doi:10.1016/0264-410x(94)90074-4. 
  26. ^ Kallen, Karl-Josef; Theß, Andreas. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Therapeutic Advances in Vaccines. 2014-1, 2 (1): 10–31. ISSN 2051-0136. PMC 3991152可免费查阅. PMID 24757523. doi:10.1177/2051013613508729. 
  27. ^ Heiser, Axel; Coleman, Doris; Dannull, Jens; Yancey, Donna; Maurice, Margaret A.; Lallas, Costas D.; Dahm, Philipp; Niedzwiecki, Donna; Gilboa, Eli. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. The Journal of Clinical Investigation. 2002-02-01, 109 (3): 409–417. ISSN 0021-9738. PMID 11828001. doi:10.1172/JCI14364 (英语). 
  28. ^ Karikó, Katalin; Buckstein, Michael; Ni, Houping; Weissman, Drew. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity. 2005-08-01, 23 (2): 165–175. ISSN 1074-7613. PMID 16111635. doi:10.1016/j.immuni.2005.06.008 (English). 
  29. ^ Blakney, Anna K.; Ip, Shell; Geall, Andrew J. An Update on Self-Amplifying mRNA Vaccine Development. Vaccines. 2021-02, 9 (2): 97. doi:10.3390/vaccines9020097 (英语). 
  30. ^ The story of mRNA: From a loose idea to a tool that may help curb Covid. STAT. 2020-11-10 [2021-11-10] (美国英语). 
  31. ^ Usdin, Steve. DARPA’s gambles might have created the best hopes for stopping COVID-19. BioCentury. [2021-11-10]. 
  32. ^ Therapeutics, Moderna. DARPA Awards Moderna Therapeutics A Grant For Up To $25 Million To Develop Messenger RNA Therapeutics™. www.prnewswire.com. [2021-11-10] (英语). 
  33. ^ Dolgin, Elie. The tangled history of mRNA vaccines. Nature. 2021-09-14, 597 (7876): 318–324. doi:10.1038/d41586-021-02483-w (英语). 
  34. ^ Hou, Xucheng; Zaks, Tal; Langer, Robert; Dong, Yizhou. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials. 2021-08-10: 1–17. ISSN 2058-8437. doi:10.1038/s41578-021-00358-0 (英语). 
  35. ^ Ball, Philip. The lightning-fast quest for COVID vaccines — and what it means for other diseases. Nature. 2020-12-18, 589 (7840): 16–18. doi:10.1038/d41586-020-03626-1 (英语). 
  36. ^ UK authorises Pfizer/BioNTech COVID-19 vaccine. GOV.UK. [2021-11-10] (英语). 
  37. ^ UK approves Pfizer/BioNTech Covid vaccine for rollout next week. the Guardian. 2020-12-02 [2021-11-10] (英语). 
  38. ^ Commissioner, Office of the. Comirnaty and Pfizer-BioNTech COVID-19 Vaccine. FDA. 2021-11-09 (英语). 
  39. ^ Batty, Cole J.; Heise, Mark T.; Bachelder, Eric M.; Ainslie, Kristy M. Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Advanced Drug Delivery Reviews. 2021-2, 169: 168–189. ISSN 0169-409X. PMC 7733686可免费查阅. PMID 33316346. doi:10.1016/j.addr.2020.12.006. 
  40. ^ Kyriakidis, Nikolaos C.; López-Cortés, Andrés; González, Eduardo Vásconez; Grimaldos, Alejandra Barreto; Prado, Esteban Ortiz. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines. 2021-02-22, 6: 28. ISSN 2059-0105. PMC 7900244可免费查阅. PMID 33619260. doi:10.1038/s41541-021-00292-w. 
  41. ^ Hajj, Khalid A.; Whitehead, Kathryn A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials. 2017-09-12, 2 (10): 1–17. ISSN 2058-8437. doi:10.1038/natrevmats.2017.56 (英语). 
  42. ^ Schlake, Thomas; Thess, Andreas; Fotin-Mleczek, Mariola; Kallen, Karl-Josef. Developing mRNA-vaccine technologies. RNA Biology. 2012-11-01, 9 (11): 1319–1330. ISSN 1547-6286. PMC 3597572可免费查阅. PMID 23064118. doi:10.4161/rna.22269. 
  43. ^ Anand, Pratibha; Stahel, Vincent P. Review the safety of Covid-19 mRNA vaccines: a review. Patient Safety in Surgery. 2021-05-01, 15: 20. ISSN 1754-9493. PMC 8087878可免费查阅. PMID 33933145. doi:10.1186/s13037-021-00291-9. 
  44. ^ Goldman, Author Bruce. How do the new COVID-19 vaccines work?. Scope. 2020-12-22 [2021-11-10] (美国英语). 
  45. ^ Xu, Shuqin; Yang, Kunpeng; Li, Rose; Zhang, Lu. mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. International Journal of Molecular Sciences. 2020-01, 21 (18): 6582. doi:10.3390/ijms21186582 (英语). 
  46. ^ Fiedler, Katja; Lazzaro, Sandra; Lutz, Johannes; Rauch, Susanne; Heidenreich, Regina. mRNA Cancer Vaccines. Walther, Wolfgang (编). Current Strategies in Cancer Gene Therapy. Recent Results in Cancer Research. Cham: Springer International Publishing. 2016: 61–85. ISBN 978-3-319-42934-2. doi:10.1007/978-3-319-42934-2_5 (英语). 
  47. ^ PHG Foundation. RNA vaccines: an introduction. University of Cambridge. 2019 [2020-11-18]. (原始内容存档于2020-11-20). 
  48. ^ Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery. April 2018, 17 (4): 261–279. PMC 5906799可免费查阅. PMID 29326426. doi:10.1038/nrd.2017.243. 
  49. ^ Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery. 2018, 17 (4): 261–279. ISSN 1474-1776. doi:10.1038/nrd.2017.243. 
  50. ^ Why Does Pfizer's COVID-19 Vaccine Need To Be Kept Colder Than Antarctica?. NPR.org. [2020-11-18] (英语). 
  51. ^ Why Does Pfizer's COVID-19 Vaccine Need To Be Kept Colder Than Antarctica?. NPR.org (英语). 
  52. ^ Moderna Announces Longer Shelf Life for its COVID-19 Vaccine Candidate at Refrigerated Temperatures. NPR.org (英语).