跳转到内容

钾盐:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
InternetArchiveBot留言 | 贡献
补救3个来源,并将0个来源标记为失效。) #IABot (v2.0.8.8
Wing留言 | 贡献
无编辑摘要
标签HTML註解
第1行: 第1行:
[[文件:Kalisalz.jpg|thumb|钾石盐]]
'''钾盐'''是指含[[钾]]的矿物,分为[[可溶性]]钾盐矿物和[[不可溶性]]含钾的[[铝]][[硅]][[酸盐]]矿物。世界上95%的钾盐产品用作[[肥料]],5%用于[[工业]]。
'''钾盐'''是指含[[钾]]的矿物,分为[[可溶性]]钾盐矿物和[[不可溶性]]含钾的[[铝]][[硅]][[酸盐]]矿物。世界上95%的钾盐产品用作[[肥料]],5%用于[[工业]]。典型的钾盐包括[[钾石盐]]、[[光鹵石]]、[[钾盐镁矾]]和[[水镁矾]]等。

钾盐和[[石盐]]不同的在于钾盐一般不是没有颜色的,而往往是橙红色到淡棕色的,这个颜色来源于晶体里含的[[氧化铁]]和氢氧化铁。世界上大多数钾盐矿是含有钾石盐和水镁矾的矿床。大多数水镁矾矿位于德国。


== 矿业简史==
== 矿业简史==
第12行: 第15行:
== 参考文献 ==
== 参考文献 ==
{{Reflist|2}}
{{Reflist|2}}

<!--
[[File:PotashUSGOV.jpg|thumb|Polycrystalline potash, with a [[penny (United States coin)|U.S. penny]] for reference. (The coin is {{convert|19|mm|in|abbr=on}} in diameter and [[copper (color)|copper]] in color.)]]

'''Potash''' ({{IPAc-en|ˈ|p|ɒ|t|æ|ʃ}}) includes various mined and manufactured [[salt (chemistry)|salts]] that contain [[potassium]] in water-[[solute|soluble]] form.<ref name=usgs2>[http://minerals.usgs.gov/minerals/pubs/commodity/potash/myb1-2008-potas.pdf Potash], USGS 2008 Minerals Yearbook</ref> The name derives from ''pot ash'', plant ashes or [[wood ash]] soaked in water in a pot, the primary means of manufacturing potash before the [[Industrial Era]]. The word ''[[potassium]]'' is derived from ''potash''.<ref>{{cite journal|first=Humphry|last=Davy|title=On some new phenomena of chemical changes produced by electricity, in particular the decomposition of the fixed alkalies, and the exhibition of the new substances that constitute their bases; and on the general nature of alkaline bodies|page=32|year=1808|volume=98|journal=Philosophical Transactions of the Royal Society of London|url=https://books.google.com/books?id=gpwEAAAAYAAJ&pg=PA32|doi=10.1098/rstl.1808.0001|doi-access=free}}</ref>

Potash is produced worldwide in amounts exceeding 90&nbsp;million [[tonne]]s (40 million tonnes [[Potassium oxide|K<sub>2</sub>O]] equivalent) per year, with Canada being the largest producer, mostly for use in [[fertilizer]]. Various kinds of fertilizer-potash constitute the single greatest industrial use of the element potassium in the world. Potassium was first derived in 1807 by [[electrolysis]] of caustic potash ([[potassium hydroxide]]).<ref>{{cite book|last1=Knight|first1=David|title=Humphry Davy: Science and Power|url=https://archive.org/details/isbn_9780631168164|url-access=registration|date=1992|publisher=Blackwell|location=Oxford|pages=[https://archive.org/details/isbn_9780631168164/page/66 66]|isbn=9780631168164}}</ref>

== {{Anker|Abraumsalze}} Geschichte ==
Kalisalze wurden erstmals 1857 in Deutschland [[Entdeckung der Staßfurter Kalisalzlagerstätte|entdeckt]], und zwar beim Abteufen der Schächte ''von der Heydt'' und ''Manteuffel'' des königlich preußischen Salzbergwerkes in [[Staßfurt]]. Sie störten bei der Steinsalzgewinnung, wurden als Bitter- oder '''Abraumsalze''' bezeichnet und auf Halde geschüttet. Nachdem erkannt wurde, um welchen wertvollen Rohstoff es sich dabei handelte, werden sie seitdem nach dem wichtigen Bestandteil Kalium als Kalisalze bezeichnet.<ref>{{Literatur |Hrsg=Rudolf von Carnall |Titel=Steinsalzbergbau |Sammelwerk=Zeitschrift für das Berg-, Hütten- und Salinenwesen in dem Preussischen Staate |Band=Sechster Band |Verlag=Wilhelm Hertz |Ort=Berlin |Datum=1858 |Seiten=255 |Online=[https://books.google.de/books?id=7IMLAAAAYAAJ&dq=Westlich%20vom%20Manteuffelschacht%20hat%20man%20unmittelbar%20im%20Liegenden%20der%20mit%20Bittersalz&hl=de&pg=RA1-PP17#v=onepage&q=Bittersalz&f=false Google Books] |Abruf=2016-02-12 | Zitat=Westlich vom Manteuffelschacht hat man unmittelbar im Liegenden der mit Bittersalz [das sind die später als überaus wertvoll geschätzten, vorerst aber auf [[Halde]] geschütteten Kalisalze] stark verunreinigten Abraumssalze auf der hangenden Steinsalzbank [[Strecke (Bergbau)|streichend]] nach Norden und Süden ausgelenkt und zwar in ersterer Richtung einen 23<big>½</big> Ltr. [= Lachter], in der letzteren 22<big>¼</big> Ltr.; man stellte jedoch gegen Ende des Jahres diese Strecken wegen der starken Verunreinigung des hier anstehenden Steinsalzes mit bitteren Salzen wieder ein.}}</ref><ref>[[s:MKL1888:Abraumsalze|1885]]</ref>

== Entstehung ==
{{Hauptartikel|Evaporite}}
[[Datei:Liniensalz Sondershausen 1.jpg|mini|450px|Salzschichten im Zechsteinsalinar von Sondershausen, tektonisch verformt]]
Die Kalisalzlagerstätten Mitteleuropas entstanden vor gut 250 Millionen Jahren im [[Zechstein]] ([[Lopingium|Oberperm]]) und [[Tertiär]] (Oberrheingraben: [[Wittelsheim]]er Becken im Oberelsass und bei [[Buggingen]] in Südbaden). Im Bereich der heutigen Kalilagerstätten befanden sich zu dieser Zeit flache Randmeere (sogenannte [[Epikontinentalmeer]]e) oder Meeresarme und das Klima in der Region war [[Arides Klima|trocken und heiß]], wodurch viel Meerwasser in relativ kurzer Zeit verdunsten konnte. Infolge tektonischer Bewegungen wurden diese Meere bzw. Meeresarme vom offenen Ozean abgeriegelt, sodass sie auszutrocknen begannen. Aus einem so immer salziger werdenden Gewässer kristallisieren nach ihrer Löslichkeit nacheinander prinzipiell folgende Stoffe aus:

# [[Kalkstein]]/[[Dolomit (Gestein)|Dolomit]],
# [[Gips]]/[[Anhydrit]] (Eindunstung auf mindestens ca. 25 % der Ausgangsmenge),
# Steinsalz (Eindunstung auf mindestens ca. 10 % der Ausgangsmenge),
# Kalisalz (Eindunstung auf weniger als 1 % der Ausgangsmenge).

Meist wurde diese Abscheidungsfolge aber aufgrund des Verschwindens der Barriere oder einer Klimaänderung bereits im Stadium der Gips- oder Steinsalzabscheidung unterbrochen oder beendet. Kalisalzlagerstätten sind deshalb relativ selten. Die einmal auskristallisierte Salzabfolge wurde nachfolgend durch andere Sedimente (zum Beispiel [[Ton (Bodenart)|Ton]]) überdeckt. Oft stellten sich aber die für die Austrocknung günstigen Bedingungen wieder ein und die Eindunstung und Abscheidung begann von neuem. Durch gleichzeitige, langsame, kontinuierliche Absenkung des Untergrundes des Meeresbeckens konnten sich so im Laufe einiger Millionen Jahre bis zu mehrere tausend Meter mächtige Gips- und Salzschichten bilden. Im [[Zechsteinbecken]] im Untergrund Mittel- und Westeuropas werden mindestens fünf solcher Serien unterschieden, die auch Zechsteinzyklen genannt werden. Drei dieser Zyklen (''Werra'', ''Staßfurt'' und ''Leine'' genannt) enthalten Kalisalzschichten.

Irgendwann änderten sich die klimatischen oder geographischen Verhältnisse aber dauerhaft dahingehend, dass keine Salze mehr abgeschieden wurden. Die Ablagerung anderer Sedimente (zum Beispiel [[Sand]], der sich nachfolgend zu [[Sandstein]] verfestigte) setzte sich aber fort und so wurde das Salz durch wiederum tausende Meter mächtige Gesteinsschichten überlagert.

Da Salz aber eine geringere Dichte hat als die meisten anderen Gesteine und unter Druck zudem beginnt, zäh zu fließen, sammelte es sich an bestimmten Stellen und begann von dort in Richtung der Erdoberfläche aufzusteigen. Bei diesem als [[Halokinese]] bezeichneten Vorgang entstanden schließlich [[Salzstock|Salzkissen, -mauern und -stöcke]]. So gelangte das Kalisalz zusammen mit dem Steinsalz in Oberflächennähe, wo es heute für Menschen erreichbar ist und in [[Bergwerk]]en abgebaut werden kann.

== Vorkommen ==
[[Datei:Sylvinite.jpg|mini|Sylvinitprobe mit weißem und blauem Halit und kleinen rötlichen Sylvineinsprenglingen aus dem [[Uralkali]]-Bergwerk SKRU-2 in [[Solikamsk]], [[Region Perm]], Russland.]]
Die größten Kalisalzvorkommen außerhalb Deutschlands finden sich in [[Russland]], [[Belarus]] und der [[Ukraine]], in [[Kanada]], den [[USA]] sowie im chinesischen [[Lop Nor]]. Auch aus [[Salzsee]]n wie dem [[Totes Meer|Toten Meer]] werden von Israel und Jordanien bedeutende Mengen gewonnen. Die [[Deutschland|deutschen]] Vorkommen liegen im Raum [[Gorleben]]-[[Braunschweig]]-[[Hannover]] in [[Niedersachsen]], in der [[Altmark]] und der [[Griese Gegend|Griesen Gegend]], im Raum [[Magdeburg]]-[[Halle (Saale)|Halle]] in [[Sachsen-Anhalt]] ([[Zielitz]]) sowie in Süd[[Baden (Land)|baden]] (seit den 1970er Jahren stillgelegt), im [[Solling]], Süd[[Harz (Gebirge)|harz]] (größtenteils stillgelegt, [[Bleicherode]] und [[Sondershausen]]) und [[Dün]] und im [[Werra]]-[[Fulda (Fluss)|Fulda]]-Bereich in [[Hessen]] und [[Thüringen]] ([[Neuhof (bei Fulda)|Neuhof-Ellers]], [[Werra-Kalirevier]] mit Werken in [[Heringen (Werra)|Heringen]], [[Philippsthal (Werra)|Philippsthal]] und [[Unterbreizbach]]).

== Gewinnung ==
{{Hauptartikel|Kalibergbau}}
Kalisalze werden in Deutschland in [[Untertagebau|untertägigen]] [[Salzbergwerk|Bergwerken]] abgebaut.

Die bergmännische [[Gewinnung (Bergbau)|Gewinnung]] erfolgt entweder konventionell durch [[Schießen (Bergbau)|Bohr- und Schießarbeit]] oder maschinell mittels [[Teilschnittmaschine|Teil-]] und [[Vollschnittmaschine]]n.

Weltweit gibt es Versuche, Kalisalze (Carnallite) ähnlich wie [[Steinsalz]] durch [[Solung|Bohrlochsolung]] (Heißlaugung) zu gewinnen. Ein derartiger Solbergbau findet z.&nbsp;B. in [[Bleicherode]] und [[Kehmstedt]] statt.

== Aufbereitung ==
[[Datei:DE Bokeloh aerial.jpg|mini|Luftbild der Abraumhalde (rechts im Bild) des [[Kaliwerk Sigmundshall|Kalibergwerks Sigmundshall]] in [[Bokeloh (Wunstorf)|Bokeloh]] bei [[Hannover]].]]
Da das Rohsalz einen durchschnittlichen Wertstoffgehalt von 20 bis 35 Prozent hat, ist eine [[Aufbereitung (Kalibergbau)|Aufbereitung]] in [[übertägig]]en Fabrikanlagen notwendig. Als Aufbereitungsverfahren kommen die [[Flotation]], das [[Heißlöseverfahren|Heißverlösen]] oder die [[elektrostatische Trennung]] in Frage. Je nach Aufbereitungsverfahren wird das Produkt anschließend getrocknet und veredelt, beispielsweise durch [[Granulare Materie|Granulierung]].

Eine wesentliche Schwierigkeit liegt in der Entsorgung der bei der Aufbereitung anfallenden Restlaugen mit hohen Gehalten an Magnesiumsalzen und Natriumchlorid. Diese werden zum Teil in poröse Schichten des oberen Muschelkalk [[Verpressung|verpresst]], zum Teil gehen sie als [[Abwasser]] in die [[Vorfluter]] (z.&nbsp;B. Werra).

== Nutzung ==
Kalisalze werden hauptsächlich zu [[Mineraldünger]] verarbeitet. Für gewöhnlich hat Kalidünger eine Reinheit von mehr als 90 Prozent. Weil dies einem Kaliumanteil von rund 60 Prozent entspricht, wird er auch als „60er Kali“ bezeichnet.<ref>[https://www.kali-gmbh.com/dede/fertiliser/products/mop_fine.html?display=ShortText Datenblatt 60er Kali], [[K+S]] AG.</ref> Das hochreine 99er Kaliumchlorid oder Industriekali findet in der chemischen Industrie und Medizin Verwendung. Bei chlorid-sensiblen Agrarpflanzen wird Dünger verwendet, der hauptsächlich aus Kaliumsulfat besteht.<ref>[http://datasheets.k-plus-s.com/ehswww/site6/result/openSingleRep_main_fs.jsp?P_LANGU=D&P_SYS=6&C001=PDB&C003=D&C005=K0016&C900=PDB-KALI3 Datenblatt KALISOP]{{Toter Link|date=2018-04 |archivebot=2018-04-18 13:40:10 InternetArchiveBot |url=http://datasheets.k-plus-s.com/ehswww/site6/result/openSingleRep_main_fs.jsp?P_LANGU=D&P_SYS=6&C001=PDB&C003=D&C005=K0016&C900=PDB-KALI3 }} K+S Deutschland GmbH.</ref>

== Wirkung als Dünger ==
Der [[Mineralstoff]] [[Kalium]] ist ein [[Hauptnährelement]] der [[Pflanzenernährung]] und verstärkt bei Pflanzen die Stoffwechselprozesse: Die [[Photosynthese]] wird intensiviert, die Umwandlung von Traubenzucker (Glucose) in Stärke und der Aufbau von Eiweiß beschleunigt. Dadurch wird das Wachstum der Pflanzen gefördert.

Das K<sup>+</sup>-Ion ist das wichtigste Ion im Stoffwechsel der Pflanze zur Erhöhung des [[Osmose|osmotischen Druckes]] und Quellungszustandes. Eine ausreichende Kalidüngung bewirkt eine bessere Anpassung der Pflanze an [[Trockenstress|Trockenheit]] und erhöht die [[Frosthärte]]. Indirekt wird die Standfestigkeit der Pflanzen verbessert. Kalimangel führt zur [[Welke (Pflanze)|Welketracht]], [[Chlorose]]n an älteren Blättern sowie dem Absterben vom Blattrand (Randnekrose).

==Terminology==
Potash refers to potassium compounds and potassium-bearing materials, most commonly potassium carbonate. The word "potash" originates from the [[Middle Dutch]] "''potaschen''", denoting "pot ashes" in 1477.<ref name="Etyl">
{{cite web
|last1=van der Sijs i.a.|first1=Nicoline
|title=POTAS (SCHEIKUNDIG ELEMENT)
|url=http://etymologiebank.nl/trefwoord/potas|website=Etymologiebank
|access-date=14 August 2016
|language=nl
|date=2010
}}</ref>
The old method of making [[potassium carbonate]] ({{chem|K|2|CO|3}}) was by collecting or producing [[wood ash]] (the occupation of [[ash burner]]s), [[Leaching (chemistry)|leaching]] the ashes, and then evaporating the resulting solution in large iron pots, which left a white residue denominated "pot ash".<ref>{{OEtymD|potash}}</ref> Approximately 10% by weight of common [[wood ash]] can be recovered as potash.<ref name=usgs>{{cite news|url=http://minerals.usgs.gov/minerals/pubs/commodity/potash/|publisher=USGS|title=Potash|author=Stephen M. Jasinski}}</ref><ref name=ce/> Later, "potash" became widely applied to naturally occurring potassium salts and the commercial product derived from them,<ref>{{cite news|title=The World Potash Industry: Past, Present and Future|publisher=50th Anniversary Meeting The Fertilizer Industry Round Table|place=New Orleans, LA|year=2000|url=http://www.potashcorp.com/media/pdf/investor_relations/speeches/world_potash_industry.pdf}}{{dead link|date=March 2018 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> although it most probably derived its name (where it was used) from the anion of the acid that replaced the carbonate [[Moiety (chemistry)|moiety]], a common equivocative use of "potash" for "potassium".

The following table lists a number of potassium compounds that have "potash" in their traditional names:
{| class="wikitable"
|-
! Common name !! Chemical name (Formula)
|-
|Potash fertilizer ||colspan="2"|c.&nbsp;1942 [[potassium carbonate]] (K<sub>2</sub>CO<sub>3</sub>); c.&nbsp;1950 any one or more of [[potassium chloride]] (KCl), [[potassium sulfate]] (K<sub>2</sub>SO<sub>4</sub>) or [[potassium nitrate]] (KNO<sub>3</sub>).<ref>{{cite book|title = 2005 Minerals Handbook|chapter = Potash|publisher = [[United States Geological Survey]]|date = September 2006|author = Dennis Kostick|page = 58.1|chapter-url = http://minerals.usgs.gov/minerals/pubs/commodity/potash/potasmyb05.pdf|access-date = 2011-01-29}}</ref><ref>{{cite journal|publisher = [[American Chemical Society]]|title = Composition of Potash Fertilizer Salts for Sale on the American Market|author = J. W. Turrentine|doi=10.1021/ie50299a022|journal = Industrial & Engineering Chemistry|year = 1934|volume = 26|issue = 11|pages = 1224–1225}}</ref> Does ''not'' contain [[potassium oxide]] (K<sub>2</sub>O), which plants do not take up.<ref>{{cite journal
| title = Potash Terminology and Facts
| author = Joseph R. Heckman
| journal = Plant & Pest Advisory
| date = January 17, 2002
| publisher = [[Rutgers University]]
| volume = 7 | issue = 13 | page = 3
| url = http://njaes.rutgers.edu/pubs/plantandpestadvisory/2002/fc0117.pdf
}} Reprinted from ''Agri-Briefs'', from the Agronomists of the Potash & Phosphate Institute, Winter 2001–2002, No.7</ref> The amount of potassium is often reported as K<sub>2</sub>O equivalent (that is, how much it would be if in K<sub>2</sub>O form), however, to allow apples-to-apples comparison between different fertilizers using different types of potash.
|-
|Caustic potash or potash lye ||[[potassium hydroxide]] (KOH)
|-
|{{nowrap|Carbonate of potash,}} {{nowrap|salts of tartar,}} or {{nowrap|pearl ash}} ||[[potassium carbonate]] (K<sub>2</sub>CO<sub>3</sub>)
|-
|Chlorate of potash ||[[potassium chlorate]] (KClO<sub>3</sub>)
|-
|Muriate of potash (MOP) ||[[potassium chloride]] (KCl:NaCl = 95:5 or higher)<ref name=usgs2/>
|-
|Nitrate of potash or saltpeter||[[potassium nitrate]] (KNO<sub>3</sub>)
|-
|Sulfate of potash (SOP) ||[[potassium sulfate]] (K<sub>2</sub>SO<sub>4</sub>)
|-
|{{nowrap|Permanganate of potash}} ||[[potassium permanganate]] (KMnO<sub>4</sub>)
|}

==Production==
All commercial potash deposits come originally from [[evaporite]] deposits and are often buried deep below the earth's surface. Potash ores are typically rich in potassium chloride (KCl), sodium chloride (NaCl) and other salts and clays, and are typically obtained by conventional shaft mining with the extracted ore ground into a powder.<ref>{{Cite book|title = Management of Agricultural Inputs|last = Alikhan|first = Irfan|publisher = Agrotech Publishing Academy|year = 2014|isbn = 9789383101474}}</ref> Other methods include dissolution mining and evaporation methods from brines.

In the evaporation method, hot water is injected into the potash, which is dissolved and then pumped to the surface where it is concentrated by solar induced evaporation. [[Amine]] reagents are then added to either the mined or evaporated solutions. The amine coats the KCl but not NaCl. Air bubbles cling to the amine + KCl and float it to the surface while the NaCl and clay sink to the bottom. The surface is skimmed for the amine + KCl, which is then dried and packaged for use as a K rich fertilizer—KCl dissolves readily in water and is available quickly for [[plant nutrition]].<ref>[http://www.ipni.net/ipniweb/portal.nsf/0/68907f5d1e5922f8062577ce006ad872/$FILE/K%20Fert%20Prod%20&%20Tech%2011%2016%2010.pdf Potassium Fertilizer Production and Technology] {{Webarchive|url=https://web.archive.org/web/20121202150508/http://www.ipni.net/ipniweb/portal.nsf/0/68907f5d1e5922f8062577ce006ad872/%24FILE/K%20Fert%20Prod%20%26%20Tech%2011%2016%2010.pdf |date=2012-12-02 }}. International Plant Nutrition Institute.</ref>

Potash deposits are located throughout the world. {{As of|2015}}, deposits are being mined in Canada, Russia, China, Belarus, Israel, Germany, Chile, the United States, Jordan, Spain, the United Kingdom, Uzbekistan and Brazil,<ref>QUICK GUIDE TO POTASH. (2013, June 14). Retrieved September 29, 2015, from http://www.geoalcali.com/en/quick-guide-to-potash/ {{Webarchive|url=https://web.archive.org/web/20150930075527/http://www.geoalcali.com/en/quick-guide-to-potash/ |date=2015-09-30 }}</ref> with the most significant deposits present in [[Saskatchewan]], Canada.<ref name=ce>{{cite encyclopedia|date=March 4, 2015|url=https://www.thecanadianencyclopedia.ca/en/article/potash|title=Potash|encyclopedia=[[The Canadian Encyclopedia]]|access-date=August 31, 2019}}</ref>

==Occupational hazards==
Excessive respiratory disease due to environmental hazards, such as [[radon]] and [[asbestos]], has been a concern for potash miners throughout history. Potash miners are liable to develop [[silicosis]]. Based on a study conducted between 1977 and 1987 of cardiovascular disease among potash workers, the overall mortality rates were low, but a noticeable difference in above-ground workers was documented.<ref>{{cite journal|title=Mortality from Cardiovascular Diseases among Potash Miners Exposed to Heat|first1=Pascal|last1=Wild|first2=Jean-Jacques|last2=Moulin|first3=François-Xavier|last3=Ley|first4=Paul|last4=Schaffer|date=16 April 1995|journal=Epidemiology|volume=6|issue=3|pages=243–247|jstor = 3702386|doi = 10.1097/00001648-199505000-00009|pmid=7619930|s2cid=40033328}}</ref>

==History of production==
[[File:FirstUSpatent.jpg|thumbnail|The first [[United States patent law|U.S. patent]] was issued for an improvement "in the making of Pot ash and Pearl ash by a new Apparatus and Process"; it was signed by then President [[George Washington]].]]
[[File:CoveredHopperForPotashBoltonON.jpg|thumb|A covered hopper car in a Canadian train for shipping potash by rail.]]
Potash (especially potassium carbonate) has been used in bleaching textiles, making [[glass]], ceramic, and making [[soap]], since the Bronze Age.<ref>{{Cite web |title=Potash {{!}} Encyclopedia.com |url=https://www.encyclopedia.com/earth-and-environment/minerals-mining-and-metallurgy/mineralogy-and-crystallography/potash#:~:text=POTASH%20(potassium%20carbonate)%20and%20soda%20(sodium%20carbonate)%20have%20been%20used%20from%20the%20dawn%20of%20history%20in%20bleaching%20textiles,%20making%20glass,%20and,%20from%20about%20a.d.%20500,%20in%20making%20soap. |access-date=2022-04-25 |website=www.encyclopedia.com}}</ref> Potash was principally obtained by [[Leaching (chemistry)|leaching]] the ashes of land and sea plants.{{Cn|date=July 2022}}

Beginning in the 14th century potash was mined in [[Ethiopia]]. One of the world's largest deposits, 140 to 150 million tons, is located in the [[Dallol, Ethiopia|Dallol]] area of the [[Afar Region]].<ref name="Ethiopia Mining">[http://www.photius.com/countries/ethiopia/economy/ethiopia_economy_mining.html Ethiopia Mining]. Photius.com. Retrieved on 2013-06-21.</ref>

Potash was one of the most important industrial chemicals. It was refined from the ashes of [[broad-leaved tree|broadleaved trees]] and produced primarily in the forested areas of Europe, [[Russia]], and [[North America]]. Although methods for producing artificial alkalis were invented in the late eighteenth century, these did not become economical until the late nineteenth century and so the dependence on organic sources of potash remained.

Potash became an important international trade commodity in Europe from at least the early fourteenth century. It is estimated that European imports of potash required 6 or more million cubic metres each year from the early seventeenth century.<ref>Paul Warde, 'Trees, Trade and Textiles: Potash Imports and Ecological Dependency in British Industry, C .1550–1770', Past & Present, 240, 1, 2018, 47-82</ref>

Between 1420 and 1620, the primary exporting cities for [[wood ash|wood-derived potash]] were [[Gdańsk]], [[Königsberg]] and [[Riga]]. From the 1640s, geopolitical disruptions (i.e. [[Russo-Polish War (1654–1667)]]) meant that the centres of export moved from the Baltic to Archangel, Russia. In 1700, Russian ash was dominant though Gdańsk remained notable for the quality of its potash. In the late fifteenth century, London was the lead importer due to its position as the centre of soft soap making while the Dutch dominated as suppliers and consumers in the sixteenth century.<ref name="Paul Warde 2018">Paul Warde, 'Trees, Trade and Textiles: Potash Imports and Ecological Dependency in British Industry, C .1550–1770', Past & resent, 240, 1, 2018, 47-82</ref>

=== 18th century ===
The first [[United States patent law|U.S. patent]] of any kind was issued in 1790 to [[Samuel Hopkins (inventor)|Samuel Hopkins]] for an improvement "in the making of Pot ash and Pearl ash by a new Apparatus and Process".<ref>[[s:United States patent X1|Patent X1: the making of Pot ash and Pearl ash by a new Apparatus and Process (1790)]]. en.wikisource.org</ref> ''Pearl ash'' was a purer quality made by [[calcination]] of potash in a [[reverberatory furnace]] or kiln. [[Potash pit]]s were once used in [[England]] to produce potash that was used in making soap for the preparation of wool for yarn production.

By the eighteenth century, higher quality American potash was increasingly imported to Britain. In the late 18th and early 19th centuries, potash production provided settlers in North America a way to obtain badly needed cash and credit as they cleared wooded land for crops. To make full use of their land, settlers needed to dispose of excess wood. The easiest way to accomplish this was to burn any wood not needed for fuel or construction. Ashes from [[hardwood]] trees could then be used to make [[Potassium hydroxide|lye]], which could either be used to make soap or boiled down to produce valuable potash. Hardwood could generate ashes at the rate of 60 to 100 [[bushel]]s per acre (500 to 900 m³/km<sup>2</sup>). In 1790, ashes could be sold for $3.25 to $6.25 per acre ($800 to $1,500/km<sup>2</sup>) in rural [[New York State]] – nearly the same rate as hiring a laborer to clear the same area. Potash making became a major industry in British North America. Great Britain was always the most important market. The American potash industry followed the woodsman's ax across the country. After about 1820, New York replaced New England as the most important source; by 1840 the center was in Ohio. Potash production was always a by-product industry, following from the need to clear land for [[agriculture]].<ref name="digital.library.okstate.edu">Robert C. Fite [http://digital.library.okstate.edu/oas/oas_pdf/v32/p123_125.pdf Origin and occurrence of commercial potash deposits] {{Webarchive|url=https://web.archive.org/web/20100623234316/http://digital.library.okstate.edu/OAS/oas_pdf/v32/p123_125.pdf |date=2010-06-23 }}, ''Academy of Sciences for 1951'', p. 123</ref>

On the [[Orkney]] islands as early as 1719 for a century, [[kelp]] ash provided potash and [[soda ash]], "substances eagerly sought after by the glass and soap industries of the time."<ref name="stkelp">{{cite news |title=Kelp Burning in Orkney |url=http://orkneyjar.com/tradition/kelpburning.htm |website=orkneyjar.com |publisher=Sigurd Towrie}}</ref>

From 1767, potash from wood ashes was exported from Canada. By 1811, 70% of the total 19.6 million lbs of potash imports to Britain came from Canada.<ref name="Paul Warde 2018"/> Exports of potash and pearl ash reached 43,958 barrels in 1865. There were 519 [[Ashery|asheries]] in operation in 1871.

=== 20th century industrializaton ===
The wood-ash industry declined in the late 19th century when large-scale production of [[:Category:Potassium minerals|potash from mineral]] salts was established in [[Germany]]. In 1943, potash was discovered in [[Saskatchewan]], Canada, in the process of drilling for oil. Active exploration began in 1951. In 1958, the Potash Company of America became the first potash producer in Canada with the commissioning of an underground potash mine at [[Patience Lake]]; due to water seepage in its shaft, however, production stopped late in 1959 but following extensive grouting and repairs, resumed in 1965. The underground mine was flooded in 1987 and was reactivated for commercial production as a solution mine in 1989.<ref name="ce" />

[[File:Canadianpotashmine.jpg|thumbnail|A postcard of the Kalium Chemicals plant in [[Belle Plaine, Saskatchewan]]]]
In 1964 a Canadian company known as Kalium Chemicals established the first potash mine that took advantage of the solution process. The discovery was made during oil reserve exploration. The mine was developed near Regina, Saskatchewan. The mine reached depths greater than 1500 meters. Mosaic's, Belle Plaine had later gone to undertake the operation of the mine.<ref name=ce/>[[Image:Potash evaporation ponds near Moab, UT, May 2013.jpg|thumb|Potash evaporation ponds at the [[Intrepid Potash]] mine near [[Moab, Utah]]]]

Most of the world reserves of potassium (K) were deposited as sea water in ancient [[inland ocean]]s. After the water evaporated, the potassium salts crystallized into beds of potash ore. These are the locations where potash is being mined today. The deposits are a naturally occurring mixture of potassium chloride (KCl) and sodium chloride (NaCl), more commonly known as [[table salt]]. Over time, as the surface of the earth changed, these deposits were covered by thousands of feet of earth.<ref name="digital.library.okstate.edu"/>

Most potash mines today are deep shaft mines as much as 4,400 feet (1,400 m) underground. Others are mined as strip mines, having been laid down in horizontal layers as [[sedimentary rock]]. In above-ground processing plants, the KCl is separated from the mixture to produce a high-analysis potassium fertilizer. Other potassium salts can be separated by various procedures, resulting in potassium sulfate and potassium-magnesium sulfate.

Today some of the world's largest known potash deposits are spread all over the world from [[Saskatchewan]], Canada, to [[Brazil]], [[Belarus]], Germany, and the [[Permian Basin (North America)|Permian Basin]]. The Permian basin deposit includes the major mines outside of [[Carlsbad, New Mexico|Carlsbad]], New Mexico, to the world's purest potash deposit in [[Lea County, New Mexico]] (not far from the Carlsbad deposits), which is believed to be roughly 80% pure. ([[Osceola County, Michigan]] has deposits 90+% pure; the only mine there was converted to salt production, however.) Canada is the largest producer, followed by Russia and Belarus. The most significant reserve of Canada's potash is located in the province of Saskatchewan and is mined by [[The Mosaic Company]], [[Nutrien]] and [[K+S]].<ref name=usgs2/>

In [[China]], most potash deposits are concentrated in the deserts and salt flats of the [[endorheic basins]] of its western provinces, particularly [[Qinghai]]. Geological expeditions discovered the reserves in the 1950s<ref name=jung>{{citation |last=Zheng |first=Mianping |author-mask=Zheng Mianping |title=An Introduction to Saline Lakes on the Qinghai–Tibet Plateau |url=https://books.google.com/books?id=hFz-CAAAQBAJ |publisher=Kluwer Academic Publishers |location=Dordrecht |date=1997 |page=[https://books.google.com/books?id=hFz-CAAAQBAJ&pg=PA3 3–5]|isbn=9789401154581 }}.</ref> but commercial exploitation lagged until [[Deng Xiaoping]]'s [[Reform and Opening Up Policy]] in the 1980s. The 1989 opening of the Qinghai Potash Fertilizer Factory in the remote [[Qarhan Playa]] increased China's production of [[potassium chloride]] sixfold, from less than {{convert|40,000|MT|sp=us|abbr=on}} a year at [[Haixi Mongol and Tibetan Autonomous Prefecture|Haixi]] and [[Tanggu]] to just under {{convert|240,000|MT|sp=us|abbr=on}} a year.<ref name=factsoflife>{{citation |last=Garrett |first=Donald Everett |url=https://books.google.com/books?id=_MIjCQAAQBAJ |title=Potash: Deposits, Processing, Properties, and Uses |date=1996 |location=London |publisher=Chapman & Hall |page=[https://books.google.com/books?id=_MIjCQAAQBAJ&pg=PA176 176–177]|isbn=9789400915459 }}.</ref>

In the beginning of the 20th century, potash deposits were found in the [[Dallol, Ethiopia|Dallol Depression]] in Musely and Crescent localities near the Ethiopean-[[Eritrea]]n border. The estimated reserves are 173 and 12&nbsp;million tonnes for the Musely and Crescent, respectively. The latter is particularly suitable for surface mining; it was explored in the 1960s but the works stopped due to the flood in 1967. Attempts to continue mining in the 1990s were halted by the [[Eritrean–Ethiopian War]] and have not resumed as of 2009.<ref name="industrialization1">{{cite news|title=Minerals for Agricultural Industrialization|publisher=Ministry of Mines and Energy of Ethiopia|url=http://www.mome.gov.et/industrial.html|url-status=dead|archive-url=https://web.archive.org/web/20110720153154/http://www.mome.gov.et/industrial.html|archive-date=2011-07-20}}</ref>

Recovery of potassium fertilizer salts from sea water has been studied in [[India]].<ref>[http://www.tifac.org.in/index.php?option=com_content&view=article&id=733&Itemid=205 Recovery of Potassium Fertiliser Salts from Sea Bittern] {{Webarchive|url=https://web.archive.org/web/20150610214622/http://www.tifac.org.in/index.php?option=com_content&view=article&id=733&Itemid=205 |date=2015-06-10 }}. Tifac.org.in. Retrieved on 2013-06-21.</ref> During extraction of salt from seawater by evaporation, potassium salts get concentrated in [[Bittern (salt)|bittern]], an effluent from the salt industry.

In 2013, almost 70% of potash production was controlled by [[Canpotex]], an exporting and marketing firm, and the [[Belarusian Potash Company]]. The latter was a joint venture between [[Belaruskali]] and [[Uralkali]], but on July 30, 2013, Uralkali announced that it had ended the venture.<ref>{{cite news | title=Potash sector rocked as Russia's Uralkali quits cartel | date=2013-07-30 | work=Reuters | url=https://www.reuters.com/article/russia-uralkali-idUSL6N0G013H20130730 | access-date=2017-07-01 | archive-date=2015-09-24 | archive-url=https://web.archive.org/web/20150924183441/http://www.reuters.com/article/2013/07/30/russia-uralkali-idUSL6N0G013H20130730 | url-status=live }}</ref>

==Consumption==
{| class="wikitable sortable" style="float:right"
|+Production of potash and reserves at some current mines (being <2% of global reserves)<br/>(both in <chem>K2O</chem> equivalent)<br/>(2017, in million tonnes)<ref name=":0">{{Cite web|url=https://minerals.usgs.gov/minerals/pubs/commodity/potash/mcs-2018-potas.pdf|title=Potash Mineral Commodity Summaries 2018|archive-url=https://web.archive.org/web/20190110210319/https://minerals.usgs.gov/minerals/pubs/commodity/potash/mcs-2018-potas.pdf|archive-date=2019-01-10|url-status=dead}}</ref>
! Country
! Production
! Reserves
|-
|[[Canada]]
|align=right| 12.0 (28.57%)
|align=right| 1,000 (25.64%)
|-
|[[Russia]]
|align=right| 7.2 (17.14%)
|align=right| 500 (12.82%)
|-
|[[Belarus]]
|align=right| 6.4 (15.24%)
|align=right| 750 (19.23%)
|-
|[[China]]
| align="right" | 6.2 (14.76%)
| align="right" | 360 (9.23%)
|-
|[[Germany]]
| align="right" | 2.9 (6.90%)
| align="right" | 150 (3.85%)
|-
|[[Israel]]
|align=right| 2.2 (5.24%)
|align=right| 270 (6.92%)
|-
|[[Jordan]]
|align=right| 1.3 (3.10%)
|align=right| 270 (6.92%)
|-
|[[Chile]]
| align="right" | 1.2 (2.86%)
| align="right" | 150 (3.85%)
|-
|[[Spain]]
| align="right" | 0.7 (1.67%)
| align="right" | 44 (1.13%)
|-
|[[United States]]
| align="right" | 0.5 (1.19%)
| align="right" | 210 (5.38%)
|-
|[[United Kingdom]]
| align="right" | 0.5 (1.19%)
| align="right" | 40 (1.03%)
|-
|[[Brazil]]
| align="right" | 0.3 (0.71%)
| align="right" | 24 (0.62%)
|-
|'''Other countries'''
| align="right" | 0.5 (1.19%)
| align="right" | 90 (2.31%)
|- class="sortbottom"
|'''World total'''
| align="right" | 42.0 (100.00%)
| align="right" | 3,900 (100.00%)
|}

===Fertilizers===
Potassium is the third major plant and crop nutrient after [[nitrogen]] and [[phosphorus]]. It has been used since [[Ancient history|antiquity]] as a [[soil]] [[fertilizer]] (about 90% of current use).<ref name=usgs/> Elemental potassium does not occur in nature because it reacts violently with water.<ref name="HollemanAF">{{cite book|publisher = Walter de Gruyter|year = 1985|edition = 91–100|isbn = 978-3-11-007511-3|title = Lehrbuch der Anorganischen Chemie|author = Arnold F. Holleman, Egon Wiberg and Nils Wiberg|chapter = Potassium| language = de}}</ref> As part of various compounds, potassium makes up about 2.6% of the [[Earth's crust]] by mass and is the seventh most abundant element, similar in abundance to sodium at approximately 1.8% of the crust.<ref name="Greenwood">{{cite book|last=Greenwood|first= Norman N|year=1997|title=Chemistry of the Elements |url=https://archive.org/details/chemistryelement00earn_612|url-access=limited|edition=2|place=Oxford|publisher= Butterworth-Heinemann|isbn=978-0-08-037941-8|page=[https://archive.org/details/chemistryelement00earn_612/page/n89 69]}}</ref> Potash is important for agriculture because it improves water retention, yield, nutrient value, taste, color, texture and disease resistance of food crops. It has wide application to fruit and vegetables, rice, wheat and other grains, sugar, corn, soybeans, palm oil and cotton, all of which benefit from the nutrient's quality-enhancing properties.<ref>[http://www.activex.com.au/reports/2008-09/AIV_20081114_ASX_Announ_Potash_Outlook.pdf Potash Price Close to all time highs – Future Outlook] {{webarchive|url=https://web.archive.org/web/20090918050005/http://www.activex.com.au/reports/2008-09/AIV_20081114_ASX_Announ_Potash_Outlook.pdf |date=2009-09-18 }}. ASX Release (14 November 2008). activex.com.au. Retrieved on 2013-06-21.</ref>

Demand for food and animal feed has been on the rise since 2000. The [[United States Department of Agriculture]]'s [[Economic Research Service]] (ERS) attributes the trend to average annual population increases of 75&nbsp;million people around the world. Geographically, economic growth in Asia and Latin America greatly contributed to the increased use of potash-based fertilizer. Rising incomes in developing countries also were a factor in the growing potash and fertilizer use. With more money in the household budget, consumers added more meat and dairy products to their diets. This shift in eating patterns required more acres to be planted, more fertilizer to be applied and more animals to be fed—all requiring more potash.

After years of trending upward, fertilizer use slowed in 2008. The worldwide economic downturn is the primary reason for the declining fertilizer use, dropping prices, and mounting inventories.<ref>[https://web.archive.org/web/20091008015109/http://southernstates.com/articles/ca/potash-global.aspx Potash Around the World]. southernstates.com</ref><ref>[http://www.indmin.com/Article/2188737/Channel/0/Potash-global-review-tunnel-vision.html "Potash global review: tunnel vision"], ''Industrial Minerals'', May 2009</ref>

The world's largest consumers of potash are China, the United States, Brazil, and India.<ref name="Potassio Do Brasil">[http://www.potassiodobrasil.com.br/index.php/pagina/view/9/supply-demand#x1 Supply and Demand] {{Webarchive|url=https://web.archive.org/web/20101210053902/http://www.potassiodobrasil.com.br/index.php/pagina/view/9/supply-demand#x1 |date=2010-12-10 }}. Potassiodobrasil.com.br. Retrieved on 2013-06-21.</ref> Brazil imports 90% of the potash it needs.<ref name="Potassio Do Brasil"/> Potash consumption for fertilizers is expected to increase to about 37.8 million tonnes by 2022.<ref name="auto">{{Cite journal|last1=Rawashdeh|first1=Rami Al|last2=Xavier-Oliveira|first2=Emanuel|last3=Maxwell|first3=Philip|date=2016|title=The potash market and its future prospects|journal=Resources Policy|volume=47|pages=154–163|doi=10.1016/j.resourpol.2016.01.011|issn=0301-4207}}</ref>

Potash imports and exports are often reported in K<sub>2</sub>O ''equivalent'', although fertilizer never contains potassium oxide, per se, because potassium oxide is [[Causticity|caustic]] and [[hygroscopic]].

===Pricing===
At the beginning of 2008, potash prices started a meteoric climb from less than US$200 a tonne to a high of US$875 in February 2009.<ref>{{cite news|url=http://www.potashinvestingnews.com/354-potash-prices-at-record-high.html|date=February 5, 2009|title=Potash Prices Are Record High|publisher=Potash Investing news|access-date=October 18, 2009|archive-url=https://web.archive.org/web/20090316162444/http://www.potashinvestingnews.com/354-potash-prices-at-record-high.html|archive-date=March 16, 2009|url-status=dead}}</ref> These subsequently dropped dramatically to an April 2010 low of US$310 level, before recovering in 2011–12, and relapsing again in 2013. For reference, prices in November 2011 were about US$470 per tonne, but as of May 2013 were stable at US$393.<ref>[http://www.infomine.com/investment/metal-prices/potash/5-year/ 5 Year Potash Prices and Potash Price Charts – InvestmentMine]. Infomine.com (2013-05-31). Retrieved on 2013-06-21.</ref> After the surprise breakup of the world's largest potash cartel at the end of July 2013, potash prices were poised to drop some 20 percent.<ref>{{cite news|url=https://www.reuters.com/article/potash-prices-idUSL6N0H032X20130905|title=Potash prices head for 20 pct drop after cartel disintegrates|date=5 September 2013|access-date=16 April 2019|via=www.reuters.com|newspaper=Reuters}}</ref> At the end of Dec 2015, potash traded for US$295 a tonne. In April 2016 its price was US$269.<ref>{{cite web|title=Potash Prices and Potash Price Charts|url=http://www.infomine.com/investment/metal-prices/potash/|website=InfoMine|access-date=6 September 2016|date=2016-04-30}}</ref> In May 2017, prices had stabilised at around US$216 a tonne down 18% from the previous year. By January 2018, prices have been recovering to around US$225 a tonne.<ref>{{cite web|title=Potash Prices and Potash Price Charts|url=https://ycharts.com/indicators/potassium_chloride_muriate_of_potash_spot_price
|website=ycharts|access-date=18 October 2017|date=2017-06-05}}</ref> World potash demand tends to be price inelastic in the short-run and even in the long run.<ref name="auto"/>

===Other uses===
In addition to its use as a fertilizer, potassium chloride is important in many industrialized economies, where it is used in [[aluminium recycling]], by the chloralkali industry to produce potassium hydroxide, in metal [[electroplating]], oil-well [[drilling fluid]], snow and ice melting, steel heat-treating, in medicine as a treatment for [[hypokalemia]], and [[water softening]]. Potassium hydroxide is used for industrial water treatment and is the precursor of potassium carbonate, several forms of potassium phosphate, many other potassic chemicals, and soap manufacturing. Potassium carbonate is used to produce [[animal feed]] supplements, [[cement]], [[fire extinguishers]], food products, [[Photographic processing|photographic chemical]]s, and textiles. It is also used in [[brewing]] [[beer]], pharmaceutical preparations, and as a [[catalyst]] for [[synthetic rubber]] manufacturing. Also combined with [[silica sand]] to produce [[potassium silicate]], sometimes known as [[waterglass]], for use in [[paints]] and [[arc welding]] electrodes. These non-fertilizer uses have accounted for about 15% of annual potash consumption in the United States.<ref name=usgs2/>

=== Substitutes ===
No substitutes exist for potassium as an essential plant nutrient and as an essential nutritional requirement for animals and humans. [[Manure]] and [[glauconite]] (greensand) are low-potassium-content sources that can be profitably transported only short distances to crop fields.<ref name=":0" />
-->

==书籍==
* Seaver, Frederick J. (1918) [http://www.reynoldstonnewyork.org/category/history-of-a-mill-and-logging-community-in-the-northern-new-york-state/history-of-reynoldston-ny/making-potash-in-reynoldston/ "Historical Sketches of Franklin County And Its Several Towns"], J.B Lyons Company, Albany, NY, "Making Potash"章,27–29页
* {{Literatur
|Autor=[[Walther E. Petrascheck]] & Walter Pohl
|Titel=Lagerstättenlehre
|Auflage=3
|Verlag=E. Schweizerbarth’sche Verlagsbuchhandlung
|Ort=斯图加特
|Datum=1982
|ISBN=3-510-65105-7}}
* {{Literatur
|Autor=Otto F. Geyer, Manfred P. Gwinner
|Titel=Geologie von Baden-Württemberg
|Auflage=3
|Verlag=E. Schweizerbarth’sche Verlagsbuchhandlung
|Ort=斯图加特
|Datum=1986
|ISBN=3-510-65126-X}}
* {{Literatur
|Autor=Ludwig Baumann, Igor Nikolskij, [[Manfred Wolf (Geologe)|Manfred Wolf]]
|Titel=Einführung in die Geologie und Erkundung von Lagerstätten
|Auflage=2
|Verlag=VEB Deutscher Verlag für Grundstoffindustrie
|Ort=莱比锡
|Datum=1979}}
* {{Literatur
|Autor=Wilfried Hacker
|Titel=Geowissenschaften und Bergbaugeschichte in der Dreiländer-Region Hessen, Thüringen und Niedersachsen
|Band=2
|Auflage=
|Verlag=Universitätsverlag Göttingen
|Ort=哥廷根
|Datum=2007
|ISBN=978-3-940344-03-8
|Online=[http://webdoc.sub.gwdg.de/univerlag/2007/hacker_bd2.pdf PDF]}}

==外部链接==
* [https://web.archive.org/web/20110309031121/http://www.mpaulkeeslerbooks.com/Potash.html They Burned the Woods and Sold the Ashes]
* [http://www.me.utexas.edu/~longoria/paynter/hmp/The_First_Patent.html Henry M. Paynter, ''The First Patent'', Invention & Technology,1990年秋]
* [http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PALL&S1=1790$.PD.&OS=ISD/$/$/1790&RS=ISD/1790$$ 第一份美国专利],生产钾盐的方法
* [https://web.archive.org/web/20060107214307/http://www.potashcorp.com/media/flash/world_map/ 世界农业和肥料市场地图]
* [https://web.archive.org/web/20071006195305/http://www.atimes.com/atimes/Central_Asia/IH01Ag01.html Russia reaps rich harvest with potash]


[[Category:矿物|Jia3]]
[[Category:矿物|Jia3]]
[[Category:钾化合物|*]]
[[Category:钾化合物|*]]
[[分类:农用化学品]]
[[分类:植物营养学]]
[[分类:肥料]]
[[分类:钾]]
[[分类;盐]]

2022年12月19日 (一) 14:47的版本

钾石盐

钾盐是指含的矿物,分为可溶性钾盐矿物和不可溶性含钾的酸盐矿物。世界上95%的钾盐产品用作肥料,5%用于工业。典型的钾盐包括钾石盐光鹵石钾盐镁矾水镁矾等。

钾盐和石盐不同的在于钾盐一般不是没有颜色的,而往往是橙红色到淡棕色的,这个颜色来源于晶体里含的氧化铁和氢氧化铁。世界上大多数钾盐矿是含有钾石盐和水镁矾的矿床。大多数水镁矾矿位于德国。

矿业简史

  • 1839年前,主要靠淋滤草木灰等制成各种钾化合物,或从洞穴堆积、建筑废墟中淋取KNO3以供制造黑火药之用。
  • 1839年4月,德国钻探盐矿时发现了钾盐矿床。后来,德国发展钾盐工业,使钾肥的施用量迅速增加。从此结束了人类使用草木灰作钾盐的时代。
  • 1904年,德国人在上莱茵发现钾盐矿床
  • 1910年1915年德国和法国的两个钾盐矿床开始生产。在一战前,德国几乎控制了世界的钾盐市场
  • 1956年,从死海的矿盐生产钾盐的阿拉伯鉀鹽公司成立。1958年,約旦王國授予该公司开采、生产、推销死海的矿物的一百年独家经营权[2][3]

参考文献

  1. ^ ICL Corporate > About ICL > History. 2017 [2019年2月1日]. (原始内容存档于2021年1月15日). 
  2. ^ Arab Potash/About Us/The History. 2017 [2019年2月1日]. (原始内容存档于2020年8月2日). 
  3. ^ 约旦钾盐资源储产情况. 中华人民共和国商务部. 中华人民共和国商务部驻约旦使馆经商处. 2010-12-18 [2019年2月1日]. (原始内容存档于2020-06-18). 


书籍

  • Seaver, Frederick J. (1918) "Historical Sketches of Franklin County And Its Several Towns", J.B Lyons Company, Albany, NY, "Making Potash"章,27–29页
  • Walther E. Petrascheck & Walter Pohl, Lagerstättenlehre. 3, 斯图加特: E. Schweizerbarth’sche Verlagsbuchhandlung, (德文) 
  • Otto F. Geyer, Manfred P. Gwinner, Geologie von Baden-Württemberg. 3, 斯图加特: E. Schweizerbarth’sche Verlagsbuchhandlung, (德文) 
  • Ludwig Baumann, Igor Nikolskij, Manfred Wolf, Einführung in die Geologie und Erkundung von Lagerstätten. 2, 莱比锡: VEB Deutscher Verlag für Grundstoffindustrie (德文) 
  • Wilfried Hacker, [PDF Geowissenschaften und Bergbaugeschichte in der Dreiländer-Region Hessen, Thüringen und Niedersachsen], 2, 哥廷根: Universitätsverlag Göttingen, (德文) 

外部链接

分类;盐