意外绞刑悖论

维基百科,自由的百科全书
跳转至: 导航搜索

老虎悖论Unexpected hanging paradox,又譯意外绞刑悖论)是博弈论中一个著名的逻辑悖论,流传较广。而悖论是指一种导致矛盾的命题。

故事[编辑]

国王要处决一个囚犯,但给他一个生还的机会。囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。国王对囚犯说:“你必须依次打开这些门。我可以肯定的是,在你没有打开关着老虎的那扇门之前,你无法知道老虎是在哪扇门后。”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。 开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。因此,老虎肯定不在第五扇门中。同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。”

悖论分析[编辑]

如果囚犯的推理成立,那麼就算國王把老虎放在第五扇門後,也是“料想不到”,學者们爭論的重點在於:這個推理究竟錯在第幾步?

主張錯在第一步[编辑]

如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。错在囚犯把国王的思路作为论据。

首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。本例中不考虑没有老虎的情况,即囚犯已知必有1老虎。作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。

然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理:由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。

  1. 如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在这个前提下不可能知道。 囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。
  2. 如果相信国王是会错的:
    囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢?所以国王的思路就没法唯一的推测了。囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要打开第一个门。

因此国王应且只应放到第一个门中,则国王必胜。

推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。

主張錯在第二步[编辑]

故事中的囚犯最後決定相信“沒有老虎”。但,國王並不知道囚犯是否會這樣,所以的確不可能把老虎放在第五扇門。如果囚犯決定相信“一定有老虎”,那麼在前四扇門都沒有老虎之後,第五扇門後的老虎的確就變成“可預料的”了。

既然老虎在第五扇門的話,牠一定是“可預料的”,那麼當你已經開了三扇空門時,情況是怎麼樣?我們可以試著寫成邏輯式子:前提一、老虎不可預料。前提二、老虎如果在第五扇門時,可預料。前提三、老虎不在第五扇門時,就一定在第四扇門。前提四、老虎如果在第四扇門時,可預料。結論:前提互相矛盾。

請注意:這時的邏輯推理中,既然前提互相矛盾,必定有一個以上不成立,那麼可能性就是以下四個其中之一、或是更多:

  1. 老虎可預料。
  2. 老虎如果在第五扇門時,不可預料。
  3. 老虎不在第五扇門時,也不一定在第四扇門。
  4. 老虎如果在第四扇門時,不可預料。

二和四自身是矛盾命題,不考慮,三會導致老虎變成薛定諤貓,也就是既存在亦非存在的狀態(囚犯把老虎往前門推是錯誤的,因為前提中包含「已經開了三扇空門」)。所以可能性只有一個:老虎可預料。但若老虎可預料,那麼顯示國王說謊,如果國王可能說謊,那麼老虎也真的有可能消失。

這時的正確結論是:國王一定說謊,但他的謊言可能是“老虎可預料”,卻也可能是“根本沒老虎”,囚犯只是偏心於一個可能性,結果幫國王圓謊罷了。

主張錯在最後一步[编辑]

如果“不可預料”並不是一種保證,而只意味“高機率”,“有老虎”才是保證,那麼情況又整個改觀。可以列成以下狀況:

如果囚犯連猜五次“老虎不在”,則不可預料率100%,當然是最糟的狀況。

如果囚犯連猜五次“老虎在”,這時應將不可預料率一樣視為100%。假設國王隨便放,因為平均猜錯次數是兩次,亦即猜錯一次要加不可預料率50%才公平。

假設國王隨便放,這時囚犯採用的策略,以:

  1. 先兩次不猜,再連續猜老虎在:成功率0、0、100、50、0,平均30最高分
  2. 先三次不猜,再連續猜老虎在:成功率0、0、0、100、50,平均也是30最高分
  3. 但以上兩種高分解,前兩扇門都是安全門,必須混合下列解答靈活運用
  4. 如果第一次就猜老虎在:成功率100、-50、-50、50、0,平均只有10分
  5. 如果第二次就猜老虎在:成功率0、100、50、0、-50,平均也有20分
  6. 為了便於計算,假設這四種策略囚犯都平均運用,綜合以上,老虎放在不同門的平均不可預料率,75%、87.5%、75%、50%、100%

很明顯了,這時國王的對應策略,如果把老虎放在失分最低的第五扇門,可能被囚犯豪賭賭中,所以把老虎放在失分次低的第二扇門會是最佳選擇,只要把囚犯的猜中率壓在20%以下,都可以毫無愧色說是有很高的不可預料率。

他應該從“老虎不存在”這個矛盾的結論,導出國王所謂的“不可預料”其實是指機率,再從機率上推測國王到底把老虎放在第幾個門。

其他版本[编辑]

意外绞刑悖论[编辑]

一位法官宣布这个礼拜之前在囚犯意料之外的一天对他处以绞刑。

囚犯开始推论:从今天到星期日都可能处死我,而我是不知道究竟会是哪一天的,所以哪一天都会出乎我的意料之外啊。可是假设我顺利的活到了星期六,我不就可以确定在星期日处死我了?这样的话就在意料之中了。如果我活到了星期五,而我又可以确信不会在星期六处死我的,如果继续往前推的话,他不能在任何一天绞死我。”

可是到了星期三,他却得到了他将在那天被处死的消息。事实上,这是他没有预料到的。

解疑[编辑]

在他的推论中大部分都是假设。事实上在星期日以外处死他都是意料之外的。

突擊測驗悖論(Unexpected exam paradox)[编辑]

老師宣布下星期一至星期五其中一日之中,會有一天舉行突擊測驗。學生認為根本不存在突擊測驗。若假設直到星期四還未舉行測驗,那麼星期五就會舉行,那就不算突擊,因此星期五不會舉行。若星期三還未舉行,而星期五又不會舉行,星期四就會舉行……如此類推,老師不可能進行突擊測驗。

外部連結[编辑]