德布鲁因-纽曼常数
外观
德布鲁因-纽曼常数(De Bruijn–Newman constant)是一個以特定函數H(λ, z)的零點特性有關的數學常數,用Λ來表示。函數表示式中的λ為實數的參數,而z為複數變數。H有實數根若且唯若λ ≥ Λ。此常數和有關黎曼ζ函數零點的黎曼猜想密切相關,簡單來說,黎曼猜想就是Λ ≤ 0的猜想。
年份 | Λ的下界 |
---|---|
1988 | −50 |
1991 | −5 |
1990 | −0.385 |
1994 | −4.379×10−6 |
1993 | −5.895×10−9 |
2000 | −2.7×10−9[1] |
2011 | −1.1×10−12[2] |
上式只在λ為正或0時有效,在極限中λ趨近於0,而。若λ為負值時H定義如下:
其中A和B都是常數。
參考資料
[编辑]- Csordas, G.; Odlyzko, A.M.; Smith, W.; Varga, R.S. A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda (pdf). Electronic Transactions on Numerical Analysis. 1993, 1: 104–111 [June 1, 2012]. Zbl 0807.11059. (原始内容存档 (PDF)于2021-08-19).
- de Bruijn, N.G. The Roots of Triginometric Integrals. Duke Math. J. 1950, 17: 197–226. Zbl 0038.23302.
- Newman, C.M. Fourier Transforms with only Real Zeros. Proc. Amer. Math. Soc. 1976, 61: 245–251. Zbl 0342.42007.
- Odlyzko, A.M. An improved bound for the de Bruijn–Newman constant. Numerical Algorithms. 2000, 25: 293–303. Zbl 0967.11034.
外部連結
[编辑]这是一篇關於数论的小作品。您可以通过编辑或修订扩充其内容。 |
- ^ Andrew Odlyzko. An improved bound for the de Bruijn–Newman constant. Numerical Algorithms. 2000, 25: 293–303. Zbl 0967.11034.
- ^ Saouter, Yannick; Gourdon, Xavier; Demichel, Patrick. An improved lower bound for the de Bruijn-Newman constant. Mathematics of Computation. 2011, 80 (276): 2281–2287. MR 2813360. doi:10.1090/S0025-5718-2011-02472-5.