可以证明 S 的语法幺半群是可识别S 的最小的幺半群;就是说 M(S) 识别 S,对于所有识别 S 的幺半群 N,M(S) 是 N 的子幺半群的商。S 的语法幺半群也是 S 的极小自动机的转移幺半群。
等价的说,一个语言 L 是可识别的,当且仅当商的族
是有限的。等价性的证明非常容易。假定字符串 x 是可被确定有限状态自动机识别的,带有最终机器状态是 f。如果 y 是这个机器可识别的另一个字符串,也终止于同样的最终状态 f,则明显的有 。类似的,在 中元素的数目就精确等于这个自动机的最终状态的数目。假定反过来: 在 中元素的数目是有限的。可以接着构造一个自动机,使得 是状态的集合, 是最终状态的集合,单元素集合 L 是初始状态,转移函数给出自 。明显的这个自动机识别 L。所以语言 L 是可识别的当且仅当集合 是有限的。
Jean-Eric Pin, "Syntactic semigroups"(页面存档备份,存于互联网档案馆), Chapter 10 in "Handbook of Formal Language Theory", Vol. 1, G. Rozenberg and A. Salomaa (eds.), Springer Verlag, (1997) Vol. 1, pp. 679-746