超高壓變質作用

维基百科,自由的百科全书

超高壓變質作用(英語:ultra-high-pressure metamorphism) 是指在足以穩定柯石英(coesite)(SiO2 的高壓多晶型物)的壓力下的變質過程。 研究超高壓 (UHP) 變質岩的形成和出露 過程對板塊構造、地殼的組成和演化是很重要的綫索。 1984 年超高壓變質岩的發現 [1][2]。徹底改變了我們對板塊構造的理解。 在 1984 年之前,幾乎沒有人懷疑在大陸上的岩石會達到如此高的壓力。 許多超高壓地區的形成歸因於微大陸或大陸邊緣的俯衝,所有超高壓地區的出露主要歸因於由低密度引起的浮力。 雖然俯沖在低於 10°C/km 的低熱梯度下進行,但出露在 10-30°C/km 的高熱梯度下進行。

超高壓變質指在壓力 ≥27kbar (2.7GPa),而能穩定柯石英的高壓環境的變質作用。根據指標礦物例如柯石英或金剛石 [3]、或指標礦物組合,例如菱鎂礦 + 文石[4] 來判定。

超高壓變質作用在岩石學指標礦物通常保存在榴輝岩中,包括柯石英、鑽石或鎂久石質(majoritic)石榴石。 礦物組合也可用於識別超高壓岩石; 這些組合包括菱鎂礦 + 文石[4] 。 由於礦物隨壓力和溫度的變化而改變成分,因此礦物成分也可用於計算變質壓力和溫度; 對於 UHP 榴輝岩,最好的地球氣壓計包括石榴石 + 斜輝石 + K-白雲母和石榴石 + 斜輝石 + 藍晶石 + 柯石英/石英[5]。 大多數超高壓岩石在 800 °C 和 3 GPa 的峰值條件下變質 [6]。 大多數長英質超高壓岩石經歷了廣泛的退化变质作用,幾乎沒有或沒有超高壓記錄。 通常,只有少數榴輝岩能保存已俯衝到地幔深處的咨詢[7][8]


目前在全球 20 多処找到超高壓岩石,大多數都在歐亞大陸造山帶[9]。柯石英分佈較廣,鑽石較少,鎂久石質石榴石更少。僅產於稀有地區。最古老的超高壓地區為 620 Ma [10]。 最年輕的為 8 Ma[11]。 所有都以石英長石片麻岩為主,其中含有少量基性岩(榴輝岩)或超基性岩(含石榴石橄欖岩)。有些原岩是被動大陸邊緣的沉積物或裂谷火山序列 [12][13]

參考文獻[编辑]

  1. ^ Chopin, C., 1984, Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences: Contributions to Mineralogy and Petrology, v. 86, p. 107–118.
  2. ^ Smith, D. C., 1984, Coesite in clinopyroxene in the Caledonides and its implications for geodynamics: Nature, v. 310, p. 641–644.
  3. ^ Massonne, H. J., and Nasdala, L., 2000, Microdiamonds from the Saxonian Erzgebirge, Germany: in situ micro-Raman characterisation: European Journal of Mineralogy, v. 12, p. 495-498.
  4. ^ 4.0 4.1 Klemd, R., Lifei, Z., Ellis, D., Williams, S., and Wenbo, J., 2003, Ultrahigh-pressure metamorphism in eclogites from the western Tianshan high-pressure belt (Xinjiang, western China); discussion and reply: American Mineralogist, v. 88, p. 1153-1160
  5. ^ Ravna, E. J. K., and Terry, M. P., 2004, Geothermobarometry of phengite-kyanite-quartz/coesite eclogites: Journal of Metamorphic Geology, v. 22, p. 579-592.
  6. ^ Hacker, B. R., 2006, Pressures and temperatures of ultrahigh-pressure metamorphism: Implications for UHP tectonics and H2O in subducting slabs.: International Geology Review, v. 48, p. 1053-1066.
  7. ^ Hacker, B. R., Kelemen, P. B., and Behn, M. D., 2011, Differentiation of the continental crust by relamination: Earth and Planetary Science Letters, v. 307, p. 501-516.
  8. ^ Walsh, E. O., and Hacker, B. R., 2004, The fate of subducted continental margins: Two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss complex, Norway: Journal of Metamorphic Geology, v. 22, p. 671-689.
  9. ^ Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I., and Maruyama, S., 2004, Global UHP metamorphism and continental subduction/collision: The Himalayan model: International Geology Review, v. 46, p. 1-27.
  10. ^ Jahn, B. M., Caby, R., and Monie, P., 2001, The oldest UHP eclogites of the World: age of UHP metamorphism, nature of protoliths and tectonic implications: Chemical Geology, v. 178, p. 143-158.13]
  11. ^ Baldwin, S. L., Webb, L. E., and Monteleone, B. D., 2008, Late Miocene coesite-eclogite exhumed in the Woodlark Rift: Geology, v. 36, p. 735-738.
  12. ^ Oberhänsli, R., Martinotti, G., Schmid, R., and Liu, X., 2002, Preservation of primary volcanic textures in the ultrahigh-pressure terrain of Dabie Shan: Geology, v. 30, p. 609–702.
  13. ^ Hollocher, K., Robinson, P., Walsh, E., and Terry, M., 2007, The Neoproterozoic Ottfjället dike swarm of the Middle Allochthon, traced geochemically into the Scandian hinterland, Western Gneiss region, Norway: American Journal of Science, v. 307, p. 901-953.