跳转到内容

适应过程

维基百科,自由的百科全书

这是本页的一个历史版本,由InternetArchiveBot留言 | 贡献2022年9月8日 (四) 16:58 (Add 1 book for verifiability (20220907)) #IABot (v2.0.9) (GreenC bot编辑。这可能和当前版本存在着巨大的差异。

适应过程随机过程研究中常见的概念,表示不能“预见未来”的随机过程。非正式的数学解释是,一个随机过程是适应于某个参考族的,当且仅当在任意的特定时刻,随机过程都是可测的。适应过程是随机过程理论中很多重要概念的基础。比如说能够定义伊藤积分的随机过程就需要是适应过程。

定义

设有

  • 概率空间
  • 测度空间,状态空间;
  • 有序的指标集: 可以是非负实数、有限时间集或离散时间
  • σ-代数上的参考族
  • 随机过程

则随机过程是适应过程(适应于的随机过程)当且仅当对任意的时刻映射都是-可测的随机变量[1]:37[2]:97

适应过程的定义说明,如果一个过程适应于某个参考族,那么在任意一个特定的时刻,我们掌握的信息都包括了这个过程。也就是说这个过程在任意时刻的结果必然在该时刻可知。但一般来说,适应过程在任意时刻的结果并不能提前预知。如果一个(离散的)随机过程在时刻的结果能够在的时刻已知,那么这个过程被称为在参考族可预测。可预测的随机过程必然适应于参考族,反之则不然。

例子

设状态空间为实数及其波莱尔σ-代数。设指标集为连续的: 给定一个随机过程,如果考虑过程产生的自然参考族

那么当然是适应于的过程,因为在每个时刻,都是-可测的随机变量。自然参考族也是能使得为适应变量的“最小”参考族。适应于某个参考族,当且仅当在任何时刻[3]:98

是某彩票每期的开奖结果,那么是一个适应随机过程,但不可能是一个可预测过程

参考来源

  1. ^ (英文)Peter Mörters, Yuval Peres. Brownian Motion. Cambridge University Press Cambridge Series in Statistical and Probabilistic Mathematics. 2010. ISBN 9780521760188. 
  2. ^ (英文)Karatzas, Ioannis; Shreve, Steven. Brownian Motion and Stochastic Calculus 2nd. Springer. 1991. ISBN 0-387-97655-8. 
  3. ^ (英文)Pascucci, Andrea. PDE and Martingale Methods in Option Pricing. Berlin: Springer. 2011. ISBN 978-8847017801.