跳转到内容

地函熱柱

本页使用了标题或全文手工转换
维基百科,自由的百科全书
地球的構造,最外層是地殼,最內是地核。中間的上部地函下部地函即為此熱柱學說所討論的區域

地函熱柱英语:Mantle plume)或熱柱地幔柱地球等行星地函熱對流的一種方式。較熱的岩石由地函底部一路上升至地函頂部,此時岩石頂部會部分熔融岩漿進而噴出地表,而這可能是熱點洪流玄武岩的產生機制。

板塊構造學說一樣,都涉及地函中的熱對流,但不同的是,板塊構造學說討論地函最外層——軟流圈的對流與板塊移動的關係;而熱柱則牽涉到整層2900公里深的地函的熱對流。因此有些科學家認為板塊構造釋放地函的熱,地函熱柱則釋放地核的熱。

夏威夷-帝王島鏈火山活動被認為是地函熱柱存在的重要證據[1]

概念

[编辑]

1971年威廉·傑森·摩根發表了地函熱柱理論。理論中,地函中的對流緩慢地將熱從地核攜帶至地表。現在我們知道,有兩種對流過程負責地球內部的熱交換:板塊構造與地函熱柱。前者由冷卻的岩石圈地殼沉入軟流圈來驅動,當海洋地殼隱沒,軟流圈會被動地於中洋脊湧升而達平衡。後者由地核、地函熱交換來驅動,熱物質沿細柱上升,並將熱帶離地核。地函熱柱通常獨立於板塊運動。

1970年代早期模擬地函熱柱的流體力學模型顯示[2],熱柱由兩個部分組成:呈長細柱狀,底端連至地函底部,頂端則膨大成球狀並隨上升而膨脹,整體就像有著細長柄的蘑菇。頂端呈蕈狀是因為細柱的熱物質上升速度較熱柱本體快,使物質累積於頂端所致。1980年代晚期至1990年代早期的模型顯示,球狀頂上升膨脹時可能會挾帶入周圍的軟流圈物質。

當熱柱頂抵達岩石圈底,會開始攤平並因減壓而大規模熔融形成玄武岩岩漿。這些岩漿可能會於短時間內大量噴發至地表(短於一百萬年),於大陸地殼形成洪流玄武岩,於海洋地殼則形成海底高原。洪流玄武岩的例子如印度的德干玄武岩拉杰默哈尔暗色岩,亞洲的西伯利亞玄武岩峨嵋山玄武岩,加拿大卑詩省的卡爾馬森層英语Karmutsen Formation,南非的卡露玄武岩Karoo basalts),南極洲的費勒粗玄岩Ferrar dolerite)(原與卡露連接),南美洲的巴拉那玄武岩Parana basalts)與非洲的艾坦德卡玄武岩Etendeka basalts)(此兩者在南大西洋形成前為一個玄武岩區英语Paraná and Etendeka traps),北美洲的哥倫比亞河玄武岩英语Columbia River Basalt Group。和熱柱有關聯的海底高原包括西南太平洋的昂東爪哇高原,印度洋的曼尼海根高原Maniheken plateau)。

熱柱尾端的細柱仍會繼續上升,並於固定位置不斷地提供岩漿,也就是熱點。當上方岩石圈移動,熱點噴發會形成火山鏈,方向平行於板塊移動。[3]經典例子為太平洋的夏威夷-帝王島鏈

大陸的洪流玄武岩噴發常與大陸張裂、分離有關(如衣索比亞玄武岩東非大裂谷),因而產生了地函熱柱在大陸張裂與海盆形成中扮演著重要角色的假說。因此亦可見一些自洋脊兩側延伸的火山鏈(如在南大西洋、冰島)或對稱的玄武岩區(如東南格陵蘭玄武岩英语North Atlantic Igneous Province)。

熱柱形成

[编辑]

微熱柱

[编辑]

地核的作用

[编辑]

證據

[编辑]

成鏈狀的火山軌跡

[编辑]

稀有氣體和同位素

[编辑]

地球物理上的異常

[编辑]

地球化學

[编辑]

可能的熱柱地點

[编辑]

礦脈的關連

[编辑]

其他解釋熱點的模型

[编辑]

註解

[编辑]
  1. ^ Morgan, 1972 and Willson, 1963
  2. ^ Whitehead and Luther, 1975
  3. ^ Skilbeck and Whitehead, 1978

參考文獻

[编辑]
  • Anderson, Don L. & Natland, James H. (2005). A brief history of the plume hypothesis and its competitors: Concept and controversy. In: Foulger, GR, Natland, JH, Presnall, DC, & Anderson, DL eds. Plates, plumes, and paradigms: Geological Society of America Special Paper 388 p. 119-145.
  • Anderson, Don L., 1998. The helium paradoxes, Proc. Nat. Acad. Sci., 95, 4822-4827.
  • Anderson, DL, 2005, Large igneous provinces, delamination, and fertile mantle: Elements, vol. 1, December 2005, 271-275. http://www.elementsmagazine.org/(页面存档备份,存于互联网档案馆
  • Campbell, IH, 2005, Large igneous provinces and the plume hypothesis: Elements, vol. 1, December 2005, 265-269. http://www.elementsmagazine.org/(页面存档备份,存于互联网档案馆
  • Cohen, B., Vasconcelos, P.M.D., Knesel, K. M., 2004 Tertiary magmatism in Southeast Queensland in, Dynamic Earth: Past, Present and Future, pp. 256 – 256, Geological Society of Australia
  • Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the Earth's mantle. Earth and Planetary Science Letters 206, 295-308.
  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH. Finite-frequency tomography reveals a variety of plumes in the mantle. Science. 2004, 303 (5656): 338–43. PMID 14657505. doi:10.1126/science.1092485. 
  • DePaolo, DJ, and Manga, M, 2003, Deep origin of hotspots – the mantle plume model. Science, 300, 920-921.
  • Farnetani, C.G., and H. Samuel. 2005. Beyond the thermal plume paradigm[永久失效連結]. Geophysical Research Letters 32 (April 16):L07311. Abstract.
  • Jones, AP, 2005, Meteor impacts as triggers to large igneous provinces: Elements, vol. 1, December 2005, 277-281. http://www.elementsmagazine.org/(页面存档备份,存于互联网档案馆
  • Labrosse, S., Hotspots, mantle plumes and core heat loss, Earth Planet. Sci. Lett., 199, 147-156,2002.
  • Lassiter, J. C., Constraints on the coupled thermal evoluution of the Earth's core and mantle, the age of the inner core, and the origin of the 186Os/188Os "core signal" in plume-derived lavas. Earth and Planetary Science Letters, v. 250, p. 306-317 (2006).
  • Marsh, JS, Hooper PR, Rehacek J, Duncan RA, Duncan AR, 1997. Stratigraphy and age of Karoo basalts of Lesotho and implications for correlations within the Karoo igneous province. In: Mahoney JJ and Coffin MF, editors, Large Igneous Provinces: continental, oceanic, and planetary flood volcanism, Geophysical Monograph 100, American Geophysical Union, Washington, DC, 247-272.
  • Peate DW, 1997. The Parana-Etendeka Province. In: Mahoney JJ and Coffin MF, editors, Large Igneous Provinces: continental, oceanic, and planetary flood volcanism, Geophysical Monograph 100, American Geophysical Union, Washington, DC, 247-272.
  • Ratajeski, K. (November 25, 2005). The Cretaceous Superplume页面存档备份,存于互联网档案馆
  • Ritsema, J., H.J. van Heijst, and J.H. Woodhouse, Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925–1928, 1999.
  • Saunders, AD, 2005, Large igneous provinces: origin and environmental consequences: Elements, vol. 1, December 2005, 259-263. http://www.elementsmagazine.org/(页面存档备份,存于互联网档案馆
  • Choi, S.H. . Mukasa, S.B. . Kwon, S.T. . Andronikov, A.V. , 2006, Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia

外部連結

[编辑]