跳转到内容

用户:Scholartop/沙盒

维基百科,自由的百科全书

顺序优先法(OPA)是一种多准则决策分析方法(multi-criteria decision-making ,MCDM),有助于解决具有偏好关系的群体决策问题。

描述

[编辑]

大多数的多准则决策分析方法,如层次分析法(analytic hierarchy Process, AHP)和网络分析法(Analytic Network Process, ANP) ,是以成对比较矩阵为基础的[1]

决策问题
决策问题

该方法使用线性编程方法同时计算专家、评价指标和备选方案的权重[2]。在OPA方法中使用序数数据的主要原因是与涉及人类的群体决策问题中使用的精确比例相比,序数数据的可及性和准确性[3]

在现实世界中,专家们可能对某一选择或评价指标没有足够的了解。这种情况下,问题的输入数据是不完整的,此时需要在OPA线性规划模型中删除与评价指标或备选方案相关的约束条件[4]

近年来,各种类型的数据归一化方法被应用于多准则决策方法 (multi-criteria decision-making ,MCDM) 中。Palczewski和 Satabun表明,使用各种数据归一化方法可以改变多准则决策方法的最终排名[5]。Javed 及其同事表明,可以通过避免数据归一化来解决多准则决策问题[6]。不需要对偏好关系进行归一化,因此,OPA方法不需要数据归一化[7]

OPA方法

[编辑]

OPA模型是一个线性规划模型,可以利用Simplex算法来解决。该方法的步骤如下:[8]

第一步: 确定专家,并根据工作经验、教育资格等确定专家的优先次序。

第二步: 确定评价指标,并确定每个专家对指标的偏好。

第三步: 确定备选方案,并由每个专家确定在每一评价指标下备选方案的偏好。

第四步: 构建以下线性规划模型,并通过适当的优化软件如LINGO、GAMS、MATLAB等进行求解。


在上述模型中。代表专家的等级, 代表指标的等级,代表备选方案的等级。而代表专家i在评价指标j下备选方案k的权重。在解决OPA线性规划模型后,每个备选方案的权重由以下公式计算。

每个评价指标的权重按以下公式计算。

每个专家的权重按以下公式计算。

例子

[编辑]
例子的决策问题
例子的决策问题

假设我们要调查买房子的问题。在这个决策问题中,有两位专家,同时有两个评价指标,即成本(c)和建筑质量(q),为房屋的选择提供标准。另一方面,有三所房子(h1,h2,h3)可供购买。第一个专家(x)有三年的工作经验,第二个专家(y)有两年的工作经验。该问题的结构如图所示。

第 1 步:第一位专家(x)比专家(y)有更多经验,因此 x>y。

第 2 步:专家对评价指标的偏好总结在下表中。

专家对评价指标的意见
评价指标 专家(x) 专家(y)
c 1 2
q 2 1

第 3 步:专家对备选方案的偏好总结在下表中。

专家对备选方案的意见
备选方案 专家(x) 专家(y)
c q c q
h1 1 2 1 3
h2 3 1 2 1
h3 2 3 3 2

第 4 步:根据输入数据形成 OPA 线性规划模型,具体如下。

用优化软件求解上述模型后,得到专家、评价指标和备选方案的权重如下。

因此,房子1(h1)被认为是最佳选择。此外,我们可以认为,评价指标成本(c)比评价指标建筑质量(q)更重要。另外,根据专家的权重,我们可以认为,与专家(y)相比,专家(x)对最终选择的影响更大。

应用

[编辑]

OPA方法在各个研究领域的应用总结如下。

农业、制造业、服务业

建筑行业

能源与环境

医疗保健

信息技术

交通运输

延伸

[编辑]

以下是 OPA 方法的几个扩展。

  • 灰色顺序优先法 (OPA-G)[7]
  • 模糊顺序优先法 (OPA-F)[28]
  • OPA 中的置信度测量[8]
  • 鲁棒顺序优先法 (OPA-R)[20]
  • 混合 OPA-模糊 EDAS[38]
  • 混合 DEA-OPA 模型[9]
  • 混合型 MULTIMOORA-OPA[39]
  • 团体加权顺序优先法 (GWOPA)[40]

软件

[编辑]

以下非盈利工具可用于解决使用 OPA 方法的 MCDM 问题。

  • 基于网络的解算器[41]
  • 基于 Excel 的解算器[42]
  • 基于林格的解算器[43]
  • 基于 Matlab 的求解器[44]

参考文献

[编辑]
  1. ^ Penadés-Plà, Vicent; García-Segura, Tatiana; Martí, José V.; Yepes, Víctor. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability. 2016-12, 8 (12). ISSN 2071-1050. doi:10.3390/su8121295 (英语). 
  2. ^ Ataei, Younes; Mahmoudi, Amin; Feylizadeh, Mohammad Reza; Li, Deng-Feng. Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Applied Soft Computing. 2020-01-01, 86. ISSN 1568-4946. doi:10.1016/j.asoc.2019.105893 (英语). 
  3. ^ Wang, Haomin; Peng, Yi; Kou, Gang. A two-stage ranking method to minimize ordinal violation for pairwise comparisons. Applied Soft Computing. 2021-07-01, 106. ISSN 1568-4946. doi:10.1016/j.asoc.2021.107287 (英语). 
  4. ^ Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Yuan, Jingfeng. Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing. 2021-10-01, 12 (10). ISSN 1868-5145. doi:10.1007/s12652-020-02649-w (英语). 
  5. ^ Palczewski, Krzysztof; Sałabun, Wojciech. Influence of various normalization methods in PROMETHEE II: an empirical study on the selection of the airport location. Procedia Computer Science. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019. 2019-01-01, 159. ISSN 1877-0509. doi:10.1016/j.procs.2019.09.378 (英语). 
  6. ^ 6.0 6.1 Javed, Saad Ahmed; Gunasekaran, Angappa; Mahmoudi, Amin. DGRA: Multi-sourcing and supplier classification through Dynamic Grey Relational Analysis method. Computers & Industrial Engineering. 2022-11-01, 173. ISSN 0360-8352. doi:10.1016/j.cie.2022.108674 (英语). 
  7. ^ 7.0 7.1 7.2 7.3 Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Zhang, Na. Sustainable Supplier Selection in Megaprojects: Grey Ordinal Priority Approach. Business Strategy and the Environment. 2021-01, 30 (1). ISSN 0964-4733. doi:10.1002/bse.2623 (英语). 
  8. ^ 8.0 8.1 8.2 Mahmoudi, Amin; Javed, Saad Ahmed. Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach. Group Decision and Negotiation. 2022-10, 31 (5). ISSN 0926-2644. PMC 9409630可免费查阅. PMID 36042813. doi:10.1007/s10726-022-09790-1 (英语). 
  9. ^ 9.0 9.1 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective. Group Decision and Negotiation. 2022-04-01, 31 (2). ISSN 1572-9907. doi:10.1007/s10726-021-09770-x (英语). 
  10. ^ Shajedul, Islam. Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28. doi:10.52812/ijgs.3 (美国英语). 
  11. ^ Le, Minh-Tai; Nhieu, Nhat-Luong. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability. 2022-01, 14 (8). ISSN 2071-1050. doi:10.3390/su14084732 (英语). 
  12. ^ Tafakkori, Keivan; Tavakkoli-Moghaddam, Reza; Siadat, Ali. Sustainable negotiation-based nesting and scheduling in additive manufacturing systems: A case study and multi-objective meta-heuristic algorithms. Engineering Applications of Artificial Intelligence. 2022-06-01, 112. ISSN 0952-1976. doi:10.1016/j.engappai.2022.104836 (英语). 
  13. ^ Evaluation of Automotive Parts Suppliers through Ordinal Priority Approach and TOPSIS | Management Science and Business Decisions. 2022-07-20. doi:10.52812/msbd.37 (美国英语). 
  14. ^ Li, Jintao; Dai, Yan; Wang, Cynthia Changxin; Sun, Jun. Assessment of Environmental Demands of Age-Friendly Communities from Perspectives of Different Residential Groups: A Case of Wuhan, China. International Journal of Environmental Research and Public Health. 2022-07-26, 19 (15). ISSN 1660-4601. PMC 9368052可免费查阅. PMID 35897508. doi:10.3390/ijerph19159120 (英语). 
  15. ^ Mahmoudi, Amin; Javed, Saad Ahmed. Performance Evaluation of Construction Sub‐contractors using Ordinal Priority Approach. Evaluation and Program Planning. 2022-04-01, 91. ISSN 0149-7189. doi:10.1016/j.evalprogplan.2021.102022 (英语). 
  16. ^ 16.0 16.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Adopting distributed ledger technology for the sustainable construction industry: evaluating the barriers using Ordinal Priority Approach. Environmental Science and Pollution Research. 2022-02-01, 29 (7). ISSN 1614-7499. PMC 8443118可免费查阅. PMID 34528198. doi:10.1007/s11356-021-16376-y (英语). 
  17. ^ 17.0 17.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Blockchain technology in construction organizations: risk assessment using trapezoidal fuzzy ordinal priority approach. Engineering, Construction and Architectural Management. 2022-01-01,. ahead-of-print (ahead-of-print). ISSN 0969-9988. doi:10.1108/ECAM-01-2022-0014. 
  18. ^ Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英语). 
  19. ^ 19.0 19.1 Mahmoudi, Amin; Sadeghi, Mahsa; Deng, Xiaopeng. Performance measurement of construction suppliers under localization, agility, and digitalization criteria: Fuzzy Ordinal Priority Approach. Environment, Development and Sustainability. 2022-04-12. ISSN 1573-2975. PMC 9001166可免费查阅. PMID 35431618. doi:10.1007/s10668-022-02301-x (英语). 
  20. ^ 20.0 20.1 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. A novel project portfolio selection framework towards organizational resilience: Robust Ordinal Priority Approach. Expert Systems with Applications. 2022-02-01, 188. ISSN 0957-4174. doi:10.1016/j.eswa.2021.116067 (英语). 
  21. ^ Faisal, Mohd. Nishat; Al Subaie, Abdulla Abdulaziz; Sabir, Lamay Bin; Sharif, Khurram Jahangir. PMBOK, IPMA and fuzzy-AHP based novel framework for leadership competencies development in megaprojects. Benchmarking: An International Journal. 2022-01-01,. ahead-of-print (ahead-of-print). ISSN 1463-5771. doi:10.1108/BIJ-10-2021-0583. 
  22. ^ Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Yuan, Jingfeng. Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing. 2021-10-01, 12 (10). ISSN 1868-5145. doi:10.1007/s12652-020-02649-w (英语). 
  23. ^ Elkadeem, Mohamed R.; Younes, Ali; Mazzeo, Domenico; Jurasz, Jakub; Elia Campana, Pietro; Sharshir, Swellam W.; Alaam, Mohamed A. Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment. Applied Energy. 2022-09-15, 322. ISSN 0306-2619. doi:10.1016/j.apenergy.2022.119532 (英语). 
  24. ^ Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28. doi:10.52812/ijgs.3 (美国英语). 
  25. ^ Evaluation of Barriers to Electric Vehicle Adoption in Indonesia through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2022-07-29. doi:10.52812/ijgs.46 (美国英语). 
  26. ^ 26.0 26.1 Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英语). 
  27. ^ Sotoudeh-Anvari, Alireza. The applications of MCDM methods in COVID-19 pandemic: A state of the art review. Applied Soft Computing. 2022-09-01, 126. ISSN 1568-4946. PMC 9245376可免费查阅. PMID 35795407. doi:10.1016/j.asoc.2022.109238 (英语). 
  28. ^ 28.0 28.1 28.2 Mahmoudi, Amin; Javed, Saad Ahmed; Mardani, Abbas. Gresilient supplier selection through Fuzzy Ordinal Priority Approach: decision-making in post-COVID era. Operations Management Research. 2022-06-01, 15 (1). ISSN 1936-9743. PMC 7960884可免费查阅. doi:10.1007/s12063-021-00178-z (英语). 
  29. ^ Evaluating Suppliers for Healthcare Centre using Ordinal Priority Approach | Management Science and Business Decisions. 2021-07-25. doi:10.52812/msbd.12 (美国英语). 
  30. ^ Dorado Chaparro, Javier; Fernández-Bermejo Ruiz, Jesús; Santofimia Romero, María José; del Toro García, Xavier; Cantarero Navarro, Rubén; Bolaños Peño, Cristina; Llumiguano Solano, Henry; Villanueva Molina, Félix Jesús; Gonçalves Silva, Anabela; López, Juan Carlos. Phyx.io: Expert-Based Decision Making for the Selection of At-Home Rehabilitation Solutions for Active and Healthy Aging. International Journal of Environmental Research and Public Health. 2022-01, 19 (9). ISSN 1660-4601. PMC 9103419可免费查阅. PMID 35564884. doi:10.3390/ijerph19095490 (英语). 
  31. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Koppen, Mario; Gupta, Brij B. Personal Mobility in Metaverse With Autonomous Vehicles Using Q-Rung Orthopair Fuzzy Sets Based OPA-RAFSI Model. IEEE Transactions on Intelligent Transportation Systems. 2022. ISSN 1524-9050. doi:10.1109/TITS.2022.3186294. 
  32. ^ Pamucar, Dragan; Deveci, Muhammet; Gokasar, Ilgin; Tavana, Madjid; Köppen, Mario. A metaverse assessment model for sustainable transportation using ordinal priority approach and Aczel-Alsina norms. Technological Forecasting and Social Change. 2022-09-01, 182. ISSN 0040-1625. doi:10.1016/j.techfore.2022.121778 (英语). 
  33. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Pedrycz, Witold; Wen, Xin. Autonomous Bus Operation Alternatives in Urban Areas Using Fuzzy Dombi-Bonferroni Operator Based Decision Making Model. IEEE Transactions on Intelligent Transportation Systems. 2022. ISSN 1524-9050. doi:10.1109/TITS.2022.3202111. 
  34. ^ Su, Chong; Ma, Xuri; Lv, Jing; Tu, Tao; Li, Hongguang. A multilayer affective computing model with evolutionary strategies reflecting decision-makers’ preferences in process control. ISA Transactions. 2022-09-01, 128. ISSN 0019-0578. doi:10.1016/j.isatra.2021.11.038 (英语). 
  35. ^ Amirghodsi, Sirous; Naeini, Ali Bonyadi; Makui, Ahmad. An Integrated Delphi-DEMATEL-ELECTRE Method on Gray Numbers to Rank Technology Providers. IEEE Transactions on Engineering Management. 2022-08, 69 (4). ISSN 0018-9391. doi:10.1109/TEM.2020.2980127. 
  36. ^ Bouraima, Mouhamed Bayane; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka; Qiu, Yanjun; Tanackov, Ilija. Prioritization Road Safety Strategies Towards Zero Road Traffic Injury Using Ordinal Priority Approach. Operational Research in Engineering Sciences: Theory and Applications. 2022-08-19, 5 (2). ISSN 2620-1747. doi:10.31181/oresta190822150b (英语). 
  37. ^ Bouraima, Mouhamed Bayane; Qiu, Yanjun; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka. Evaluation of Factors Affecting Road Maintenance in Kenyan Counties Using the Ordinal Priority Approach. Journal of Computational and Cognitive Engineering. 2022-08-17. ISSN 2810-9503. doi:10.47852/bonviewJCCE2202272 (英语). 
  38. ^ Le, Minh-Tai; Nhieu, Nhat-Luong. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability. 2022-01, 14 (8). ISSN 2071-1050. doi:10.3390/su14084732 (英语). 
  39. ^ Irvanizam, Irvanizam; Zulfan, Zulfan; Nasir, Puti F.; Marzuki, Marzuki; Rusdiana, Siti; Salwa, Nany. An Extended MULTIMOORA Based on Trapezoidal Fuzzy Neutrosophic Sets and Objective Weighting Method in Group Decision-Making. IEEE Access. 2022, 10. ISSN 2169-3536. doi:10.1109/ACCESS.2022.3170565. 
  40. ^ Mahmoudi, Amin; Abbasi, Mehdi; Yuan, Jingfeng; Li, Lingzhi. Large-scale group decision-making (LSGDM) for performance measurement of healthcare construction projects: Ordinal Priority Approach. Applied Intelligence. 2022-09-01, 52 (12). ISSN 1573-7497. PMC 9449288可免费查阅. PMID 36091930. doi:10.1007/s10489-022-04094-y (英语). 
  41. ^ Web-based solver. ordinalpriorityapproach.com. [2022-10-31]. 
  42. ^ Excel-based solver, Zenodo, 2021-01-21 [2022-10-31] 
  43. ^ Lingo-based solver, 2022-07-07 [2022-10-31] 
  44. ^ Matlab-based solver. www.mathworks.com. [2022-10-31] (英语).