跳至內容

使用者:Scholartop/沙盒

維基百科,自由的百科全書

順序優先法(OPA)是一種多準則決策分析方法(multi-criteria decision-making ,MCDM),有助於解決具有偏好關係的群體決策問題。

描述

[編輯]

大多數的多準則決策分析方法,如層次分析法(analytic hierarchy Process, AHP)和網絡分析法(Analytic Network Process, ANP) ,是以成對比較矩陣為基礎的[1]

決策問題
決策問題

該方法使用線性編程方法同時計算專家、評價指標和備選方案的權重[2]。在OPA方法中使用序數數據的主要原因是與涉及人類的群體決策問題中使用的精確比例相比,序數數據的可及性和準確性[3]

在現實世界中,專家們可能對某一選擇或評價指標沒有足夠的了解。這種情況下,問題的輸入數據是不完整的,此時需要在OPA線性規劃模型中刪除與評價指標或備選方案相關的約束條件[4]

近年來,各種類型的數據歸一化方法被應用於多準則決策方法 (multi-criteria decision-making ,MCDM) 中。Palczewski和 Satabun表明,使用各種數據歸一化方法可以改變多準則決策方法的最終排名[5]。Javed 及其同事表明,可以通過避免數據歸一化來解決多準則決策問題[6]。不需要對偏好關係進行歸一化,因此,OPA方法不需要數據歸一化[7]

OPA方法

[編輯]

OPA模型是一個線性規劃模型,可以利用Simplex算法來解決。該方法的步驟如下:[8]

第一步: 確定專家,並根據工作經驗、教育資格等確定專家的優先次序。

第二步: 確定評價指標,並確定每個專家對指標的偏好。

第三步: 確定備選方案,並由每個專家確定在每一評價指標下備選方案的偏好。

第四步: 構建以下線性規劃模型,並通過適當的優化軟體如LINGO、GAMS、MATLAB等進行求解。


在上述模型中。代表專家的等級, 代表指標的等級,代表備選方案的等級。而代表專家i在評價指標j下備選方案k的權重。在解決OPA線性規劃模型後,每個備選方案的權重由以下公式計算。

每個評價指標的權重按以下公式計算。

每個專家的權重按以下公式計算。

例子

[編輯]
例子的決策問題
例子的決策問題

假設我們要調查買房子的問題。在這個決策問題中,有兩位專家,同時有兩個評價指標,即成本(c)和建築質量(q),為房屋的選擇提供標準。另一方面,有三所房子(h1,h2,h3)可供購買。第一個專家(x)有三年的工作經驗,第二個專家(y)有兩年的工作經驗。該問題的結構如圖所示。

第 1 步:第一位專家(x)比專家(y)有更多經驗,因此 x>y。

第 2 步:專家對評價指標的偏好總結在下表中。

專家對評價指標的意見
評價指標 專家(x) 專家(y)
c 1 2
q 2 1

第 3 步:專家對備選方案的偏好總結在下表中。

專家對備選方案的意見
備選方案 專家(x) 專家(y)
c q c q
h1 1 2 1 3
h2 3 1 2 1
h3 2 3 3 2

第 4 步:根據輸入數據形成 OPA 線性規劃模型,具體如下。

用優化軟體求解上述模型後,得到專家、評價指標和備選方案的權重如下。

因此,房子1(h1)被認為是最佳選擇。此外,我們可以認為,評價指標成本(c)比評價指標建築質量(q)更重要。另外,根據專家的權重,我們可以認為,與專家(y)相比,專家(x)對最終選擇的影響更大。

應用

[編輯]

OPA方法在各個研究領域的應用總結如下。

農業、製造業、服務業

建築行業

能源與環境

醫療保健

信息技術

交通運輸

延伸

[編輯]

以下是 OPA 方法的幾個擴展。

  • 灰色順序優先法 (OPA-G)[7]
  • 模糊順序優先法 (OPA-F)[28]
  • OPA 中的置信度測量[8]
  • 魯棒順序優先法 (OPA-R)[20]
  • 混合 OPA-模糊 EDAS[38]
  • 混合 DEA-OPA 模型[9]
  • 混合型 MULTIMOORA-OPA[39]
  • 團體加權順序優先法 (GWOPA)[40]

軟體

[編輯]

以下非盈利工具可用於解決使用 OPA 方法的 MCDM 問題。

  • 基於網絡的解算器[41]
  • 基於 Excel 的解算器[42]
  • 基於林格的解算器[43]
  • 基於 Matlab 的求解器[44]

參考文獻

[編輯]
  1. ^ Penadés-Plà, Vicent; García-Segura, Tatiana; Martí, José V.; Yepes, Víctor. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability. 2016-12, 8 (12). ISSN 2071-1050. doi:10.3390/su8121295 (英語). 
  2. ^ Ataei, Younes; Mahmoudi, Amin; Feylizadeh, Mohammad Reza; Li, Deng-Feng. Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Applied Soft Computing. 2020-01-01, 86. ISSN 1568-4946. doi:10.1016/j.asoc.2019.105893 (英語). 
  3. ^ Wang, Haomin; Peng, Yi; Kou, Gang. A two-stage ranking method to minimize ordinal violation for pairwise comparisons. Applied Soft Computing. 2021-07-01, 106. ISSN 1568-4946. doi:10.1016/j.asoc.2021.107287 (英語). 
  4. ^ Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Yuan, Jingfeng. Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing. 2021-10-01, 12 (10). ISSN 1868-5145. doi:10.1007/s12652-020-02649-w (英語). 
  5. ^ Palczewski, Krzysztof; Sałabun, Wojciech. Influence of various normalization methods in PROMETHEE II: an empirical study on the selection of the airport location. Procedia Computer Science. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019. 2019-01-01, 159. ISSN 1877-0509. doi:10.1016/j.procs.2019.09.378 (英語). 
  6. ^ 6.0 6.1 Javed, Saad Ahmed; Gunasekaran, Angappa; Mahmoudi, Amin. DGRA: Multi-sourcing and supplier classification through Dynamic Grey Relational Analysis method. Computers & Industrial Engineering. 2022-11-01, 173. ISSN 0360-8352. doi:10.1016/j.cie.2022.108674 (英語). 
  7. ^ 7.0 7.1 7.2 7.3 Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Zhang, Na. Sustainable Supplier Selection in Megaprojects: Grey Ordinal Priority Approach. Business Strategy and the Environment. 2021-01, 30 (1). ISSN 0964-4733. doi:10.1002/bse.2623 (英語). 
  8. ^ 8.0 8.1 8.2 Mahmoudi, Amin; Javed, Saad Ahmed. Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach. Group Decision and Negotiation. 2022-10, 31 (5). ISSN 0926-2644. PMC 9409630可免費查閱. PMID 36042813. doi:10.1007/s10726-022-09790-1 (英語). 
  9. ^ 9.0 9.1 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective. Group Decision and Negotiation. 2022-04-01, 31 (2). ISSN 1572-9907. doi:10.1007/s10726-021-09770-x (英語). 
  10. ^ Shajedul, Islam. Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28. doi:10.52812/ijgs.3 (美國英語). 
  11. ^ Le, Minh-Tai; Nhieu, Nhat-Luong. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability. 2022-01, 14 (8). ISSN 2071-1050. doi:10.3390/su14084732 (英語). 
  12. ^ Tafakkori, Keivan; Tavakkoli-Moghaddam, Reza; Siadat, Ali. Sustainable negotiation-based nesting and scheduling in additive manufacturing systems: A case study and multi-objective meta-heuristic algorithms. Engineering Applications of Artificial Intelligence. 2022-06-01, 112. ISSN 0952-1976. doi:10.1016/j.engappai.2022.104836 (英語). 
  13. ^ Evaluation of Automotive Parts Suppliers through Ordinal Priority Approach and TOPSIS | Management Science and Business Decisions. 2022-07-20. doi:10.52812/msbd.37 (美國英語). 
  14. ^ Li, Jintao; Dai, Yan; Wang, Cynthia Changxin; Sun, Jun. Assessment of Environmental Demands of Age-Friendly Communities from Perspectives of Different Residential Groups: A Case of Wuhan, China. International Journal of Environmental Research and Public Health. 2022-07-26, 19 (15). ISSN 1660-4601. PMC 9368052可免費查閱. PMID 35897508. doi:10.3390/ijerph19159120 (英語). 
  15. ^ Mahmoudi, Amin; Javed, Saad Ahmed. Performance Evaluation of Construction Sub‐contractors using Ordinal Priority Approach. Evaluation and Program Planning. 2022-04-01, 91. ISSN 0149-7189. doi:10.1016/j.evalprogplan.2021.102022 (英語). 
  16. ^ 16.0 16.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Adopting distributed ledger technology for the sustainable construction industry: evaluating the barriers using Ordinal Priority Approach. Environmental Science and Pollution Research. 2022-02-01, 29 (7). ISSN 1614-7499. PMC 8443118可免費查閱. PMID 34528198. doi:10.1007/s11356-021-16376-y (英語). 
  17. ^ 17.0 17.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Blockchain technology in construction organizations: risk assessment using trapezoidal fuzzy ordinal priority approach. Engineering, Construction and Architectural Management. 2022-01-01,. ahead-of-print (ahead-of-print). ISSN 0969-9988. doi:10.1108/ECAM-01-2022-0014. 
  18. ^ Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英語). 
  19. ^ 19.0 19.1 Mahmoudi, Amin; Sadeghi, Mahsa; Deng, Xiaopeng. Performance measurement of construction suppliers under localization, agility, and digitalization criteria: Fuzzy Ordinal Priority Approach. Environment, Development and Sustainability. 2022-04-12. ISSN 1573-2975. PMC 9001166可免費查閱. PMID 35431618. doi:10.1007/s10668-022-02301-x (英語). 
  20. ^ 20.0 20.1 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. A novel project portfolio selection framework towards organizational resilience: Robust Ordinal Priority Approach. Expert Systems with Applications. 2022-02-01, 188. ISSN 0957-4174. doi:10.1016/j.eswa.2021.116067 (英語). 
  21. ^ Faisal, Mohd. Nishat; Al Subaie, Abdulla Abdulaziz; Sabir, Lamay Bin; Sharif, Khurram Jahangir. PMBOK, IPMA and fuzzy-AHP based novel framework for leadership competencies development in megaprojects. Benchmarking: An International Journal. 2022-01-01,. ahead-of-print (ahead-of-print). ISSN 1463-5771. doi:10.1108/BIJ-10-2021-0583. 
  22. ^ Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Yuan, Jingfeng. Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing. 2021-10-01, 12 (10). ISSN 1868-5145. doi:10.1007/s12652-020-02649-w (英語). 
  23. ^ Elkadeem, Mohamed R.; Younes, Ali; Mazzeo, Domenico; Jurasz, Jakub; Elia Campana, Pietro; Sharshir, Swellam W.; Alaam, Mohamed A. Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment. Applied Energy. 2022-09-15, 322. ISSN 0306-2619. doi:10.1016/j.apenergy.2022.119532 (英語). 
  24. ^ Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28. doi:10.52812/ijgs.3 (美國英語). 
  25. ^ Evaluation of Barriers to Electric Vehicle Adoption in Indonesia through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2022-07-29. doi:10.52812/ijgs.46 (美國英語). 
  26. ^ 26.0 26.1 Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英語). 
  27. ^ Sotoudeh-Anvari, Alireza. The applications of MCDM methods in COVID-19 pandemic: A state of the art review. Applied Soft Computing. 2022-09-01, 126. ISSN 1568-4946. PMC 9245376可免費查閱. PMID 35795407. doi:10.1016/j.asoc.2022.109238 (英語). 
  28. ^ 28.0 28.1 28.2 Mahmoudi, Amin; Javed, Saad Ahmed; Mardani, Abbas. Gresilient supplier selection through Fuzzy Ordinal Priority Approach: decision-making in post-COVID era. Operations Management Research. 2022-06-01, 15 (1). ISSN 1936-9743. PMC 7960884可免費查閱. doi:10.1007/s12063-021-00178-z (英語). 
  29. ^ Evaluating Suppliers for Healthcare Centre using Ordinal Priority Approach | Management Science and Business Decisions. 2021-07-25. doi:10.52812/msbd.12 (美國英語). 
  30. ^ Dorado Chaparro, Javier; Fernández-Bermejo Ruiz, Jesús; Santofimia Romero, María José; del Toro García, Xavier; Cantarero Navarro, Rubén; Bolaños Peño, Cristina; Llumiguano Solano, Henry; Villanueva Molina, Félix Jesús; Gonçalves Silva, Anabela; López, Juan Carlos. Phyx.io: Expert-Based Decision Making for the Selection of At-Home Rehabilitation Solutions for Active and Healthy Aging. International Journal of Environmental Research and Public Health. 2022-01, 19 (9). ISSN 1660-4601. PMC 9103419可免費查閱. PMID 35564884. doi:10.3390/ijerph19095490 (英語). 
  31. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Koppen, Mario; Gupta, Brij B. Personal Mobility in Metaverse With Autonomous Vehicles Using Q-Rung Orthopair Fuzzy Sets Based OPA-RAFSI Model. IEEE Transactions on Intelligent Transportation Systems. 2022. ISSN 1524-9050. doi:10.1109/TITS.2022.3186294. 
  32. ^ Pamucar, Dragan; Deveci, Muhammet; Gokasar, Ilgin; Tavana, Madjid; Köppen, Mario. A metaverse assessment model for sustainable transportation using ordinal priority approach and Aczel-Alsina norms. Technological Forecasting and Social Change. 2022-09-01, 182. ISSN 0040-1625. doi:10.1016/j.techfore.2022.121778 (英語). 
  33. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Pedrycz, Witold; Wen, Xin. Autonomous Bus Operation Alternatives in Urban Areas Using Fuzzy Dombi-Bonferroni Operator Based Decision Making Model. IEEE Transactions on Intelligent Transportation Systems. 2022. ISSN 1524-9050. doi:10.1109/TITS.2022.3202111. 
  34. ^ Su, Chong; Ma, Xuri; Lv, Jing; Tu, Tao; Li, Hongguang. A multilayer affective computing model with evolutionary strategies reflecting decision-makers’ preferences in process control. ISA Transactions. 2022-09-01, 128. ISSN 0019-0578. doi:10.1016/j.isatra.2021.11.038 (英語). 
  35. ^ Amirghodsi, Sirous; Naeini, Ali Bonyadi; Makui, Ahmad. An Integrated Delphi-DEMATEL-ELECTRE Method on Gray Numbers to Rank Technology Providers. IEEE Transactions on Engineering Management. 2022-08, 69 (4). ISSN 0018-9391. doi:10.1109/TEM.2020.2980127. 
  36. ^ Bouraima, Mouhamed Bayane; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka; Qiu, Yanjun; Tanackov, Ilija. Prioritization Road Safety Strategies Towards Zero Road Traffic Injury Using Ordinal Priority Approach. Operational Research in Engineering Sciences: Theory and Applications. 2022-08-19, 5 (2). ISSN 2620-1747. doi:10.31181/oresta190822150b (英語). 
  37. ^ Bouraima, Mouhamed Bayane; Qiu, Yanjun; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka. Evaluation of Factors Affecting Road Maintenance in Kenyan Counties Using the Ordinal Priority Approach. Journal of Computational and Cognitive Engineering. 2022-08-17. ISSN 2810-9503. doi:10.47852/bonviewJCCE2202272 (英語). 
  38. ^ Le, Minh-Tai; Nhieu, Nhat-Luong. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability. 2022-01, 14 (8). ISSN 2071-1050. doi:10.3390/su14084732 (英語). 
  39. ^ Irvanizam, Irvanizam; Zulfan, Zulfan; Nasir, Puti F.; Marzuki, Marzuki; Rusdiana, Siti; Salwa, Nany. An Extended MULTIMOORA Based on Trapezoidal Fuzzy Neutrosophic Sets and Objective Weighting Method in Group Decision-Making. IEEE Access. 2022, 10. ISSN 2169-3536. doi:10.1109/ACCESS.2022.3170565. 
  40. ^ Mahmoudi, Amin; Abbasi, Mehdi; Yuan, Jingfeng; Li, Lingzhi. Large-scale group decision-making (LSGDM) for performance measurement of healthcare construction projects: Ordinal Priority Approach. Applied Intelligence. 2022-09-01, 52 (12). ISSN 1573-7497. PMC 9449288可免費查閱. PMID 36091930. doi:10.1007/s10489-022-04094-y (英語). 
  41. ^ Web-based solver. ordinalpriorityapproach.com. [2022-10-31]. 
  42. ^ Excel-based solver, Zenodo, 2021-01-21 [2022-10-31] 
  43. ^ Lingo-based solver, 2022-07-07 [2022-10-31] 
  44. ^ Matlab-based solver. www.mathworks.com. [2022-10-31] (英語).