高斯二项式系数
外观
此条目需要扩充。 (2013年10月23日) |
高斯二项式系数 (也称作 高斯系数, 高斯多项式, 或 q-二项式系数)在数学里是指二项式系数的q-模拟。
定义
[编辑]高斯二项式系数被定义为:
其中, m 和 r 是非负整数。 当 r = 0时值为1。
高斯二项式系数计算一个有限维向量空间的子空间数。令q表示一个有限域里的元素数目,则在q元有限域上n维向量空间的k维子空间数等于
示例
[编辑]性质
[编辑]和普通二项式系数一样, 高斯二项式系数是中心对称的:
特别地,
当 q = 1 时,有
参考文献
[编辑]- Exton, H. (1983), q-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538
- Mukhin, Eugene. Symmetric Polynomials and Partitions (PDF). (原始内容 (PDF)存档于2004-12-10). (undated, 2004 or earlier).
- Ratnadha Kolhatkar, Zeta function of Grassmann Varieties (页面存档备份,存于互联网档案馆) (dated January 26, 2004)
- 埃里克·韦斯坦因. q-Binomial Coefficient. MathWorld.
- Gould, Henry. The bracket function and Fontene-Ward generalized binomial coefficients with application to Fibonomial coefficients. Fibonacci Quarterly. 1969, 7: 23–40. MR 0242691.
- Alexanderson, G. L. A Fibonacci analogue of Gaussian binomial coefficients. Fibonacci Quarterly. 1974, 12: 129–132. MR 0354537.
- Andrews, George E. Applications of basic hypergeometric functions. SIAM Rev. 1974, 16 (4). JSTOR 2028690. MR 0352557. doi:10.1137/1016081.
- Borwein, Peter B. Padé approximants for the q-elementary functions. Construct. Approx. 1988, 4 (1): 391–402. MR 0956175. doi:10.1007/BF02075469.
- Konvalina, John. Generalized binomial coefficients and the subset-subspace problem. Adv. Appl. Math. 1998, 21: 228–240. MR 1634713. doi:10.1006/aama.1998.0598.
- Di Bucchianico, A. Combinatorics, computer algebra and the Wilcoxon-Mann-Whitney test. J. Stat. Plann. Inf. 1999, 79: 349–364. doi:10.1016/S0378-3758(98)00261-4.
- Konvalina, John. A unified interpretation of the Binomial Coefficients, the Stirling numbers, and the Gaussian coefficients. Am. Math. Monthly. 2000, 107 (10): 901–910. JSTOR 2695583. MR 1806919.
- Kupershmidt, Boris A. q-Newton binomial: from Euler to Gauss. J. Nonlin. Math. Phys. 2000, 7 (2): 244–262. Bibcode:2000JNMP....7..244K. MR 1763640. arXiv:math/0004187 . doi:10.2991/jnmp.2000.7.2.11.
- Cohn, Henry. Projective geometry over F1 and the Gaussian Binomial Coefficients. Am. Math. Monthly. 2004, 111 (6): 487–495. JSTOR 4145067. MR 2076581.
- Kim, T. q-Extension of the Euler formula and trigonometric functions. Russ. J. Math. Phys. 2007, 14 (3): –275–278. Bibcode:2007RJMP...14..275K. MR 2341775. doi:10.1134/S1061920807030041.
- Kim, T. q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 2008, 15 (1): 51–57. MR 2390694. doi:10.1134/S1061920808010068.
- Corcino, Roberto B. On p,q-binomial coefficients. Integers. 2008, 8: #A29. MR 2425627.
- Hmayakyan, Gevorg. Recursive Formula Related To The Mobius Function (PDF). [2013-10-22]. (原始内容存档 (PDF)于2021-05-06). (2009).