壓電電子學
壓電電子效應 是利用壓電電勢作為「門」電壓對電荷載流子的傳輸特性進行調整和控制,可以用於製備新型的電子器件。壓電電子學的基本原理是由佐治亞理工學院的王中林教授在2007年提出來的。[1] 基於這個效應,已經製備了一系列的電子器件,包括壓電電場柵控的場效應晶體管,[2] 壓電電場控制的二極管,[3] 應變傳感器,[4] 力/流量傳感器,[5] 混合 場效應晶體管,[6] 壓電 邏輯門電路,[7] 機電 存儲器,[8] 等等. 壓電電子器件被認為是一個新的半導體器件種類。 壓電電子學在傳感器,人機交互技術,微機電系統,納米機器人,以及有源柔性電子學等領域都可能具有重大的應用前景。
機制
[編輯]由於材料具有非中心對稱性,例如纖鋅礦結構的氧化鋅、氮化鎵和氮化銦,當在材料上施加一個應力時,在晶體中會產生一個壓電電勢。由於同時具有壓電特性和半導體特性,在晶體中產生的壓電電勢會對載流子的傳輸過程產生很強的影響。通常,基本的壓電電子器件的構造可以分成兩個類型。在這裡我們以納米線為例。 對於第一類,壓電納米線被放置在一個柔性的襯底上,兩個頂端用電極固定。在這種情況下,當襯底被彎曲,納米線會被純粹的拉伸或者壓縮。壓電電勢將會沿着納米線的軸向分布。它會改變接觸區域的電場或者肖特基勢壘的高度。在一側接觸引入的正的壓電電勢將會降低肖特基勢壘的高度,而在另一側接觸引入的負的壓電電勢將會提高勢壘的高度。因此電子傳輸特性將會被改變。對於第二類壓電電子器件,納米線的一端用電極固定,而另一端是自由的。在這種情況下,當在納米線的自由端施加一個力,對其進行彎曲,壓電電勢將會垂直於納米線的軸向分布。引入的壓電電勢是垂直於電子傳輸方向的,就好像在傳統場效應晶體管中所施加的門電壓一樣。因此,電子傳輸特性將會被改變。用於壓電電子學的材料應該是壓電半導體材料,[9] 例如氧化鋅,氮化鎵和氮化銦。壓電效應,光激發和半導體特性之間三者的耦合是壓電電子學(壓電效應-半導體特性耦合),壓電光子學(壓電效應-光子激發耦合),光電子學和壓電光電子學(壓電效應-半導體特性-光激發耦合)的基礎。這些耦合效應的核心是壓電材料中產生的壓電電勢。[9]
參考文獻
[編輯]- ^ [1] (頁面存檔備份,存於網際網路檔案館) Zhong Lin Wang, 「Nanopiezotronics」, Advanced Materials, 2007, 19, 889-892.
- ^ [2] (頁面存檔備份,存於網際網路檔案館) Xudong Wang, Jun Zhou, Jinhui Song, Jin Liu, Ningsheng Xu, and Zhong Lin Wang, 「Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire」, Nano Letters, 2006, 6, 2768-2772.
- ^ [3] Jr-Hau He, Cheng-Lun Hsin, Jin Liu, Lih-Juann Chen and Zhong Lin Wang, 「Piezoelectric Gated Diode of a Single ZnO Nanowire」, Advanced Materials, 2007, 19, 781-784.
- ^ [4] (頁面存檔備份,存於網際網路檔案館) Jun Zhou, Yudong Gu, Peng Fei, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao and Zhong Lin Wang, 「Flexible Piezotronic Strain Sensor」, Nano Letters, 2008, 8, 3035-3040.
- ^ [5] (頁面存檔備份,存於網際網路檔案館) Peng Fei, Ping-Hung Yeh, Jun Zhou, Sheng Xu,Yifan Gao, Jinhui Song, Yudong Gu,Yanyi Huang and Zhong Lin Wang, 「Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire」, Nano Letters, 2009, 9, 3435-3439.
- ^ [6] (頁面存檔備份,存於網際網路檔案館) Weihua Liu, Minbaek Lee, Lei Ding, Jie Liu, and Zhong Lin Wang, 「Piezopotential Gated Nanowire-Nanotube Hybrid Field-Effect Transistor」, Nano Letters, 2010, 10, 3084-3089.
- ^ [7] (頁面存檔備份,存於網際網路檔案館) Wenzhuo Wu, Yaguang Wei, Zhong Lin Wang, 「Strain-Gated Piezotronic Logic Nanodevices」, Advanced materials, 2010, 22, 4711-4715.
- ^ [8] (頁面存檔備份,存於網際網路檔案館) Wenzhuo Wu and Zhong Lin Wang, 「Piezotronic Nanowire-Based Resistive Switches As Programmable Electromechanical Memories」, Nano Letters, 2011, 11, 2779–2785.
- ^ 9.0 9.1 [9] (頁面存檔備份,存於網際網路檔案館) Zhong Lin Wang 「Piezopotential Gated Nanowire Devices: Piezotronics and Piezo-phototronics」, Nano Today, 5 (2010) 540-552.