趙雙任
此條目可能不符合成為維基百科傳記的標準。 (2024年10月29日) |
趙雙任(1954年—),1976年畢業於北京工業學院(現北京理工大學)電子機械專業,1987年於西北電訊工程學院(現西安電子科技大學)電磁場與微波專業研究生畢業,1998年獲得西安交通大學生物醫學工程學博士學位。1976-1984 趙在西安東方機械廠任技術員。1987至1990年間,趙在電子部39所從事天線設計和研究工作。1990年到1997年期間,在德國尤利西核能研究院擔任研究員。之後,趙在德國、加拿大和美國作為工程師,研究員從事腦磁圖、正電子成像、CT圖像重建、圖像分割和圖像對準技術,病毒顯微成像等方面的研究工作。另外還從事芯片光刻仿真,GPS 汽車導航,鐵路探傷,GPU CUDA編程等技術。
主要理論成果
[編輯]光子的電磁波理論
[編輯]1987年,趙雙任提出並發表了電磁場的「互能定理」[1], [2], [3],公式如下:
他還提出了兩個電磁場內積的概念:
2017年,趙雙任將該定理擴展為「互能流定理」[4],其表達式為:
趙雙任提出的電磁場定律指出,電磁輻射不溢出宇宙,
並推導了相關公式。他認為電磁波的電場與磁場應保持90度相位差。趙認為經典電磁理論把磁場定義為矢量勢的旋度有局限性,只在准靜態電磁場條件下有效。這個磁場其實是環路上的平均磁場,而不是真正的磁場。趙通過互能流定律重新定義了電磁波的磁場。 [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]。
對經典電磁場理論的磁場的修正
[編輯]在頻域滯後矢量勢和超前的矢量勢定義為:
其中頻域電流定義為 。
趙認為經典電磁理論中把矢量勢的旋度定義為磁場是有局限性的。這個定義只對準靜態條件成立。其實矢量勢的旋度不是磁場,而是沿着環路上的平均磁場:
磁場上面一橫表示沿着環路的平均磁場,上式第一部分是輻射近場,第二部分是輻射遠場。平均磁場在准靜態條件下和磁場一致。而(真正正確的)磁場可以由平均磁場修正得到:
下標 表示近場, 表示遠場。類似的對於超前勢,
修正公式為:
趙認為,惠勒費曼在吸收體理論 [25] [26] 中提出的電流輻射一半滯後波一半超前波是正確的。
是電場, 是滯後的電場, 是超前的電場。
電磁波的磁場的定義和測量
[編輯]這個(真正正確的)電磁波的磁場的定義可以由互能流密度定義,即
其中 是探測偶極子接收天線的磁場。假定電磁波的電場為
趙不假定電磁波的磁場和電場同相位,而認為,
其中 是一個包含相位的複數。偶極子接收天線 的負載是純電阻的,因此上述互能流密度的兩項都是實數。
是被測磁場,根據上式,在測量接收天線位置, 的相位和 相同。 和 同相位。 和接收偶極子天線的電流同相位。所以有:
所以
。
這樣可以定出磁場 的相位。所以磁場 式中的相位因子可以定出為
這和前面修正的滯後磁場的結果一致。至於磁場的大小 和平均磁場的大小 一致。這樣按照趙的理論電磁波是無功功率的。因為電磁波的電場和磁場保持90度相位差。電磁波不是電場和磁場相位相同!電磁波是無功功率的,那麼電磁波平均地看是不傳遞能量的。能量是由互能流傳遞的,而趙認為互能流是粒子。因此粒子包括光子傳遞能量,而波不傳遞能量。這樣波就不必是概率的,也不必坍縮。這對波粒子二象性問題的詮釋提供了一個正確的選擇。
量子力學
[編輯]自2017年起,趙雙任開始用互能流解釋量子力學,認為任何粒子都是一種互能流。光子是與麥克斯韋方程相關的互能流,電子則是與薛定諤方程或狄拉克方程相關的互能流。他將電磁場理論中的互能流定律推廣應用到量子力學,並將能量流與互能流進行了統一[27]。
醫學成像
[編輯]在CT圖像重建方面,趙雙任提出了基於傅里葉變換的扇形光束和錐形光束CT圖像重建算法。該算法 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] 獲得大量引用。 另外在腦磁圖的研究方面趙也做了大量工作 [40] [41] [42] [43] [44] 。
參考文獻
[編輯]- ^ 趙雙任. 互能定理在球面波辐射场展开法中的应用. 電子學報. 1987.
- ^ 趙雙任. 应用电磁场“互能公式”简化电磁场公式的符号表示. 電子科學學刊 現名:電子與信息學報. 1989.
- ^ 趙雙任. 电磁场“互能公式”在平面波展开理论中的应用. 電子科學學刊 現名:電子與信息學報. 1989.
- ^ 趙雙任. A new interpretation of quantum physics: Mutual energy flow interpretation.. American Journal of Modern Physics and Application. 2017.
- ^ Shuang-ren Zhao. Photon Can Be Described as the Normalized Mutual Energy Flow. Journal of Modern Physics. 2020, 11 (5): DOI: 10.4236/jmp.2020.115043.
- ^ Shuang-ren Zhao. A solution for wave-particle duality using the mutual energy principle corresponding to Schrödinger equation. Physics Tomorrow Letter. 2020. doi:10.1490/ptl.dxdoi.com/08-02tpl-sci.
- ^ Shuang-ren Zhao. Huygens principle based on mutual energy flow theorem and the comparison to the path integral. Physics Tomorrow Letter. 2020.
- ^ Shuang-ren Zhao. Solve the Maxwell's equations and Schrödinger's equation but avoiding the Sommerfeld radiation condition. Theoretical Physics Letters. 2022, 26 (4).
- ^ Shuang-ren Zhao. Mutual stress flow theorem of electromagnetic field and extension of Newton's third law. Theoretical Physics Letters. 2022, 10 (7).
- ^ Shuang-ren Zhao. The paradox that induced electric field has energy in Maxwell theory of classical electromagnetic field is shown and solved (PDF). International Journal of Physics. 2022, 10 (4): 204–217.
- ^ Shuang-ren Zhao. The theory of mutual energy flow proves that macroscopic electromagnetic waves are composed of photons (PDF). International Journal of Physics. 2022, 10 (5).
- ^ Shuang-ren Zhao. The Contradictions in Poynting Theorem and Classical Electromagnetic Field Theory (PDF). International Journal of Physics. 2022, 10 (5): 242–251.
- ^ Shuang-ren Zhao. Energy Flow and Photons from Primary Coil to Secondary Coil of Transformer. International Journal of Physics. 2023, 11 (1): 24–39. doi:10.12691/ijp-11-1-4.
- ^ Shuang-ren Zhao. Energy Conservation Law and Energy Flow Theorem for Transformer, Antenna and Photon. International Journal of Physics. 2023, 11 (2): 56–66. doi:10.12691/ijp-11-2-1.
- ^ Shuang-ren Zhao. Experiment to Prove the Existence of the Advanced Wave and Experiment to Prove the Wrong Definition of Magnetic Field in Maxwell’s Theory. International Journal of Physics. 2023, 11 (2): 73–80. doi:10.12691/ijp-11-2-3.
- ^ Shuang-ren Zhao. Calculate the Energy Flow of Transformers, Antenna Systems, and Photons by Redefining the Radiated Electromagnetic Field of Plane-sheet Current. International Journal of Physics. 2023, 11 (3): 136–152. doi:10.12691/ijp-11-3-3.
- ^ Shuang-ren Zhao. Definition, Measurement and Calibration of Magnetic Field of Electromagnetic Wave – Correct the Defects of Maxwell’s Classical Electromagnetic Field Theory. International Journal of Physics. 2023, 11 (3): 106–135. doi:10.12691/ijp-11-3-2.
- ^ Shuang-ren Zhao. Calculate the Energy Flow of Transformers, Antenna Systems, and Photons Through a New Interpretation of the Classical Electromagnetic Fields. International Journal of Physics. 2023, 11 (5): 261–273. doi:10.12691/ijp-11-5-5.
- ^ Shuang-ren Zhao. Discussion on the Correction of Classical Electromagnetic Wave Theory Through Transmission Lines. International Journal of Physics. 2024, 12 (1): 1–18. doi:10.12691/ijp-12-1-1.
- ^ Zhao, S. R. New Law or Boundary Condition of Electromagnetic Wave Theory: Radiation Shall Not Overflow The Universe (PDF). OA Journal of Applied Science and Technology. 2024, 2 (1): 01–46.
- ^ Zhao, S. R. Distinguish Between The Average Magnetic Field On A Circular Coil And The Original Definition Of Magnetic Field, And Correct The Serious Loopholes In Classical Electromagnetic Theory (PDF). OA Journal of Applied Science and Technology. 2024, 2 (1): 01–29.
- ^ Zhao, S. R. Using the Method of Contradiction to prove that the Definition of Magnetic Field in Maxwell’s Theory is Incorrect. OA Journal of Applied Science and Technology. 2024, 2 (2): 1–12.
- ^ Zhao, S. R. Particles Are Mutual Energy Flows and Waves Are Reactive Power without Collapse. OA Journal of Applied Science and Technology. 2024, 2 (2): 01–22.
- ^ 趙雙任. 光子的电磁波理论. lulu.com. 2024.
- ^ Wheeler, J. A. and Feynman, R. P., "", Rev. Mod. Phys. 17 (1945), pp. 157.
- ^ Wheeler, J. A. and Feynman, R. P., "", Rev. Mod. Phys. 21 (1949), pp. 425.
- ^ 趙雙任. Electromagnetic Wave Theory of Photons. Amazon. 2024.
- ^ Shuangren Zhao, Kang Yang, Xintie Yang. Reconstruction from truncated projections using mixed extrapolations of exponential and quadratic functions.. J Xray Sci Technol. 2011.
- ^ Shuangren Zhao, Kang Yang, Dazong Jiang, Xintie Yang. Interior reconstruction using local inverse. Journal Name. 2011, 19 (1): 69–90S.
- ^ Shuangren Zhao, Jasjit Suri. Improved 3D Reconstruction Algorithm for Ultrasound B-scan Image with Freehand Tracker. SPIE Medical Imaging. 2009.
- ^ S. Zhao, D. Jaffray. Iterative reconstruction and reprojection for truncated projections. Medical Physics. 2004, 31: P1719.
|conference=
被忽略 (幫助) - ^ Shuang-Ren Zhao, H. Halling. Reconstruction of cone beam projections with free source path by a generalized Fourier method. Proceedings of the 1995 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine: 323–327. 1995.
- ^ Zhao, S.-R., H. Halling. A new Fourier method for fan beam reconstruction. 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record 2: 1287–1291. 1995.
- ^ Zhao, S.-R., H. Halling. A New Fourier Transform Method for Fan Beam Tomography. 1995 Nuclear Science Symposium and Medical Imaging Conference.
- ^ Zhao, S.-R., H. Halling. Tomography (PET, SPECT, X-ray CT), imaging restoration and coded aperture (報告). Interner Bericht KFA-ZEL-IB-500994.
- ^ Zhao, S.-R. Fan beam and cone beam imaging reconstruction using the method of the back projection on frequency domain (PhD論文). People's Republic of China: Xi'an Jiao Tong University. 1998.
- ^ Zhao, S.-R., H. Halling. Image Reconstruction for Fan Beam Tomography Using a New Integral Transform Pair. M.M. Lavrentev (編). International Symposium on Computerized Tomography. Novosibirsk, Russia: 125. August 10-14.
- ^ Zhao, S.-R., H. Halling. A New Fourier Method for Fan Beam Reconstruction. M.M. Lavrentev (編). International Symposium on Computerized Tomography. Novosibirsk, Russia: 125. August 10-14.
- ^ Shuangren Zhao, Xintie Yang. Iterative reconstruction in all sub-regions. SCIENCEPAPER ONLINE. 2006, 1 (4).
- ^ Shuang-Ren Zhao, Horst Halling. Minimum L1 Norm MEG Reconstruction Minimising Signal Deviation Using A Reduced Lead Field. 18th Annual International Conference IEEE Engineering in Medicine and Biology Society. October 31, 1996.
- ^ S.R. Zhao, H. Heer, A. A. Ioannides, M. Wagener, H. Halling, H.-W. Müller-Gärtner. Interpolation of Magnetic Fields and Its Gradients for MEG Data with Spline Functions. Meeting of Bildverarbeitung für Medizin Algorithmen, Systeme, Anwendungen. RWTH Aachen. November 8, 1996.
- ^ Shuang-Ren Zhao, Johannes Grotendorst, Horst Halling. Calculation of the Potential Distribution for a Three-Layer Spherical Volume Conductor. Maple Technical Newsletter. 1995, 2 (1).
- ^ Zhao Shuangren, Jiang Dazong. Best Minimization to Locate the Brain Sources of Magnetic Waves. Biomedical Engineering Magazine (China). 1999, 16 (4).
- ^ Zhao Shuangren, Jiang Dazong. Locating the Brain Sources by Applying the Combination of the Method of Minimization with Three Object Functions and the Method of Singular Value Decomposition to the Signals of Brain Magnetic Fields. Beijing Biomedical Engineering Magazine. 1999, 18 (2).