親脂效率

維基百科,自由的百科全書

親脂效率[1](英文:Lipophilic efficiency,LiP),也稱為配體親脂效率(英文:Ligand-lipophilicity efficicency,LLE),是藥物設計藥物發現中用於評估研究化合物質量的參數,將效價和親脂性聯繫起來以評估藥物相似性[2][3]對於給定的化合物,LiPE定義為關注的pIC50(或pEC50)與化合物LogP的差值。

兩個系列化合物的LogP與pIC50的關係圖(系列1:綠點,系列2:藍點)。對角線表示相等的 LiPE 面積。對該LiPE圖的分析表明,系列1包括許多具有高LiPE的化合物,因此可能代表更好的先導系列以供進一步優化。

在研發實踐中,通常使用計算值(例如cLogP或計算出的 cLogD)來代替測量的LogP或LogD。LiPE用於比較不同效價(pIC50s)和親脂性(LogP)的化合物。高效價,即pIC50值高是候選藥物的理想屬性,因為在給定的藥物濃度下,高效價意味著降低了非特異性和脫靶的藥理學風險。當藥物與低清除率相關時,高效價也允許更低的用藥劑量,從而降低特異質藥物反應的風險。[4][5]

另一方面,LogP代表了化合物總體親脂性的估算,該值會影響藥物發現中一系列生物過程中的行為,例如溶解度、生物膜滲透性、肝清除率、缺乏選擇性和非-特異性毒性。[6]對於口服藥物,LogP值介於2和3之間通常被認為是實現滲透性和首過清除率之間折衷的最佳選擇。

經驗證據表明優質候選藥物具有高LiPE(>6);該值對應於 pIC50 = 8且LogP = 2的化合物。繪製一系列化合物的 LogP對pIC50的關係圖可以對一個系列和單個化合物進行優先等級排序。

另一個方程使用效能比(以結合能測量)和分配係數對數來計算具有不同比例的親脂性配體效率指數(LE)。 [7]

其他複合效率指標的背景下的LipE。[8]

參考文獻[編輯]

  1. ^ Ryckmans T, Edwards MP, Horne VA, Correia AM, Owen DR, Thompson LR, Tran I, Tutt MF, Young T. Rapid assessment of a novel series of selective CB(2) agonists using parallel synthesis protocols: A Lipophilic Efficiency (LipE) analysis. Bioorganic & Medicinal Chemistry Letters. August 2009, 19 (15): 4406–9. PMID 19500981. doi:10.1016/j.bmcl.2009.05.062. 
  2. ^ Edwards MP, Price DA. Role of Physicochemical Properties and Ligand Lipophilicity Efficiency in Addressing Drug Safety Risks. Annual Reports in Medicinal Chemistry. 2010, 45: 381–391. ISBN 9780123809025. doi:10.1016/S0065-7743(10)45023-X. 
  3. ^ Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews. Drug Discovery. November 2007, 6 (11): 881–90. PMID 17971784. S2CID 205476574. doi:10.1038/nrd2445. 
  4. ^ Uetrecht J. Prediction of a new drug's potential to cause idiosyncratic reactions. Current Opinion in Drug Discovery & Development. January 2001, 4 (1): 55–9. PMID 11727323. 
  5. ^ Uetrecht J. Idiosyncratic drug reactions: past, present, and future. Chemical Research in Toxicology. January 2008, 21 (1): 84–92. PMID 18052104. doi:10.1021/tx700186p. 
  6. ^ Hughes JD, Blagg J, Price DA, Bailey S, Decrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N, Huang E, Krieger-Burke T, Loesel J, Wager T, Whiteley L, Zhang Y. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters. September 2008, 18 (17): 4872–5. PMID 18691886. doi:10.1016/j.bmcl.2008.07.071. 
  7. ^ García-Sosa AT, Hetényi C, Maran U. Drug efficiency indices for improvement of molecular docking scoring functions. Journal of Computational Chemistry. January 2010, 31 (1): 174–84. PMID 19422000. S2CID 19092197. doi:10.1002/jcc.21306. 
  8. ^ Shultz MD. Setting expectations in molecular optimizations: Strengths and limitations of commonly used composite parameters. Bioorganic & Medicinal Chemistry Letters. November 2013, 23 (21): 5980–91. PMID 24018190. doi:10.1016/j.bmcl.2013.08.029.