# 偶极子天线

## 直天线的理论分析

${\displaystyle \mathbf {A} (\mathbf {r} ,\,t)\ =\ {\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$

### 积分方程法

${\displaystyle {\frac {\partial ^{2}A_{z}}{\partial z^{2}}}-{\frac {1}{c^{2}}}{\frac {\partial ^{2}A_{z}}{\partial t^{2}}}=-{\frac {1}{c^{2}}}{\frac {\partial ^{2}\phi }{\partial z\partial t}}-{\frac {1}{c^{2}}}{\frac {\partial ^{2}A_{z}}{\partial t^{2}}}={\frac {1}{c^{2}}}{\frac {\partial E_{z}}{\partial t}}}$

${\displaystyle {\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}({\frac {\partial ^{2}}{\partial z^{2}}}-{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}})({\frac {J_{z}(\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}})\,d^{3}\mathbf {r} '={\frac {1}{c^{2}}}{\frac {\partial E_{z}}{\partial t}}}$

${\displaystyle {\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}J_{z}(\mathbf {r} ')({\frac {\partial ^{2}}{\partial z^{2}}}+k^{2})({\frac {\exp {(-ik|\mathbf {r} -\mathbf {r} '|)}}{|\mathbf {r} -\mathbf {r} '|}})\,d^{3}\mathbf {r} '={\frac {ik}{c}}E_{z}}$

${\displaystyle \int _{\mathbb {V} '}J_{z}(\mathbf {r} ')({\frac {\exp {(-ik|\mathbf {r} -\mathbf {r} '|)}}{|\mathbf {r} -\mathbf {r} '|}})\,d^{3}\mathbf {r} '=C\cos {(kz)}-i{\frac {\omega \epsilon _{0}}{2k}}U\sin {(k|z|)}}$

### 细空心圆柱形天线

${\displaystyle \int _{-L/2}^{L/2}I(z')({\frac {\exp {(-ik|\mathbf {r} -\mathbf {r} '|)}}{|\mathbf {r} -\mathbf {r} '|}})\,d^{3}\mathbf {r} '=C\cos {(kz)}-i{\frac {\omega \epsilon _{0}}{2k}}U\sin {(k|z|)}}$

${\displaystyle I(z,t)=I_{0}cos({\frac {2\pi }{\lambda }}(L/2-|z|))\cos(\omega t)}$

${\displaystyle \mathbf {A} (\mathbf {r} ,\,t)\ =\ {\frac {\mu _{0}I_{0}\mathbf {\hat {z}} }{4\pi }}\int _{-L/2}^{L/2}{\frac {\cos(k(L/2-|z|'))\cos(\omega t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,dz'}$

${\displaystyle r>>L}$
${\displaystyle r>>\lambda }$
${\displaystyle r>>L^{2}/\lambda }$

${\displaystyle \mathbf {A} (\mathbf {r} ,\,t)\ =\ {\frac {\mu _{0}I_{0}\mathbf {\hat {z}} }{4\pi r}}\int _{-L/2}^{L/2}\cos(k(L/2-|z|'))\cos(\omega t-kr+kz'\cos {\theta })dz'={\frac {\mu _{0}I_{0}\cos(\omega t-kr)\mathbf {\hat {z}} }{2\pi kr}}({\frac {\cos {(kL/2\cos {\theta })-\cos {(kL/2)}}}{\sin ^{2}{\theta }}})}$

${\displaystyle \mathbf {B} =\mathbf {\nabla } \times \mathbf {A} \approx {\frac {\mu _{0}I_{0}\sin {(\omega t-kr)}\mathbf {\hat {\phi }} }{2\pi r}}({\frac {\cos {(kL/2\cos {\theta })-cos{(kL/2)}}}{\sin {\theta }}})}$

${\displaystyle {\frac {dP}{d\Omega }}={\frac {\mu _{0}cI_{0}^{2}}{8\pi ^{2}}}({\frac {\cos {(kL/2\cos {\theta })-cos{(kL/2)}}}{\sin {\theta }}})^{2}}$

${\displaystyle P={\frac {\mu _{0}cI_{0}^{2}}{2\pi \sin ^{2}(kL/2)}}\{\gamma +\ln(kL)-\operatorname {Ci} (kL)+{\tfrac {1}{2}}\sin(kL)\operatorname {Si} (2kL)-2\operatorname {Si} (kL)+{\tfrac {1}{2}}\cos(kL)[\gamma +\ln(kL/2)+\operatorname {Ci} (2kL)-2\operatorname {Ci} (kL)]\}=R_{\mathrm {dipole} }I_{0}^{2}}$

## 参考文献

1. ^ Winder, Steve; Joseph Carr. Newnes Radio and RF Engineering Pocket Book, 3rd Ed.. Newnes. 2002: 4. ISBN 0080497470.
2. ^ Dipole Antenna / Aerial tutorial. Resources. Radio-Electronics.com, Adrio Communications, Ltd. 2011 [April 29, 2013]. （原始内容存档于2018-07-18）.
3. ^ Basu, Dipak. Dictionary of Pure and Applied Physics, 2nd Ed.. CRC Press. 2010: 21 [2016-07-06]. ISBN 1420050222. （原始内容存档于2014-07-20）.
4. ^ Rouse, Margaret. Dipole Antenna. Online IT Encyclopedia. TechTarget.com. 2003 [April 29, 2013]. （原始内容存档于2020-10-27）.
5. ^ Balanis, Constantine A. Modern Antenna Handbook. John Wiley & Sons. 2011: 2.3 [2016-07-06]. ISBN 1118209753. （原始内容存档于2014-07-20）.
6. ^ 約翰·戴維·傑克遜著，朱培豫译. 经典电动力学. 人民教育出版社. 1979: 444-446.