# 哈密頓原理

## 定義

${\displaystyle {\mathcal {S}}\ {\stackrel {\mathrm {def} }{=}}\ \int _{t_{1}}^{t_{2}}L(\mathbf {q} ,{\dot {\mathbf {q} }},t)\,dt\,}$

## 拉格朗日方程式導引

${\displaystyle {\boldsymbol {\varepsilon }}(t_{1})={\boldsymbol {\varepsilon }}(t_{2})\ {\stackrel {\mathrm {def} }{=}}\ 0\,}$

${\displaystyle \delta {\mathcal {S}}=\int _{t_{1}}^{t_{2}}\;\left[L(\mathbf {q} +{\boldsymbol {\varepsilon }},{\dot {\mathbf {q} }}+{\dot {\boldsymbol {\varepsilon }}},t)-L(\mathbf {q} ,{\dot {\mathbf {q} }},t)\right]dt=\int _{t_{1}}^{t_{2}}\;\left({\boldsymbol {\varepsilon }}\cdot {\frac {\partial L}{\partial \mathbf {q} }}+{\dot {\boldsymbol {\varepsilon }}}\cdot {\frac {\partial L}{\partial {\dot {\mathbf {q} }}}}\right)\,dt\,}$

${\displaystyle \delta {\mathcal {S}}=\left[{\boldsymbol {\varepsilon }}\cdot {\frac {\partial L}{\partial {\dot {\mathbf {q} }}}}\right]_{t_{1}}^{t_{2}}+\int _{t_{1}}^{t_{2}}\;\left({\boldsymbol {\varepsilon }}\cdot {\frac {\partial L}{\partial \mathbf {q} }}-{\boldsymbol {\varepsilon }}\cdot {\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {\mathbf {q} }}}}\right)\,dt}$

${\displaystyle \delta {\mathcal {S}}=\int _{t_{1}}^{t_{2}}\;{\boldsymbol {\varepsilon }}\cdot \left({\frac {\partial L}{\partial \mathbf {q} }}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {\mathbf {q} }}}}\right)\,dt\,}$

${\displaystyle \delta {\mathcal {S}}=\int _{t_{1}}^{t_{2}}\;{\boldsymbol {\varepsilon }}\cdot \left({\frac {\partial L}{\partial \mathbf {q} }}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {\mathbf {q} }}}}\right)\,dt=0\,}$

${\displaystyle {\frac {\partial L}{\partial \mathbf {q} }}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {\mathbf {q} }}}}=\mathbf {0} \,}$

## 參考文獻

1. 列夫, 朗道. 理论物理学教程-第一卷 力学. 北京: 高等教育出版社. 2007. ISBN 9787040208498.
• Herbert Goldstein (1980) Classical Mechanics, 2nd ed., Addison Wesley, pp. 35-69.
• 列夫·朗道and E. M. Lifshitz, Mechanics, Course of Theoretical Physics（Butterworth-Heinenann, 1976）, 3rd ed., Vol. 1. ISBN 0-7506-2896-0.
• Arnold VI.（1989）Mathematical Methods of Classical Mechanics, 2nd ed., Springer Verlag, pp. 59-61.