基础代谢率

维基百科,自由的百科全书
跳转至: 导航搜索

基础代谢率英语basal metabolic rate首字母缩写BMR)是指在自然温度环境中,恆温動物(比如人)的身体在非活动的状态下,处于消化状态(肠胃充满食物,分解作用大于合成作用),维持生命所需消耗的最低能量。这些能量主要用于保持各器官的机能,如呼吸)、心跳心脏)、腺体分泌(及其他神经系统)、过滤排泄(肾脏)、解毒(肝脏)、肌肉活动等等。基础代谢率会随着年龄增加或体重减轻而降低,而随着肌肉增加而增加。疾病、进食、环境温度变化、承受压力水平变化都会改变人体的能量消耗,从而影响基础代谢率。

基础代谢率的测量需要在严格的条件下进行,受测者必须处于清醒且完全静止状态,同时其交感神经系统需要保持非激活状态。另一种相关的条件但较宽松的测量是“静止代谢率”的测量[1] 基础代谢率和静止代谢率的测量可以采用量热法来进行气体分析而直接获得结果,或通过一个包含有年龄、性别、身高、体重的公式来进行间接估算。基础代谢率的单位为“千焦/平方米/小时”,表征每小时每平方米体表所散发的热量。

參考文獻[编辑]

  1. ^ CaloriesPerHour.com. Diet and Weight Loss Tutorial. Calculating BMR and RMR. [2008-01-26]. 

參考文獻[编辑]

  • Tsai, AG; Wadden, TA. Systematic review: An evaluation of major commercial weight loss programs in the United States. Annals of internal medicine. 2005, 142 (1): 56–66. doi:10.7326/0003-4819-142-1-200501040-00012. PMID 15630109. 
  • Gustafson, D.; Rothenberg, E; Blennow, K; Steen, B; Skoog, I. An 18-Year Follow-up of Overweight and Risk of Alzheimer Disease. Archives of Internal Medicine. 2003, 163 (13): 1524–8. doi:10.1001/archinte.163.13.1524. PMID 12860573. 
  • Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: Executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. The American journal of clinical nutrition. 1998, 68 (4): 899–917. PMID 9771869. 
  • Segal, Arthur C. Linear Diet Model. College Mathematics Journal. 1987, 18 (1): 44–5. doi:10.2307/2686315. 
  • Pike, Ruth L; Brown, Myrtle Laurestine. Nutrition: An Integrated Approach 2nd. New York: Wiley. 1975. OCLC 474842663. 
  • Sahlin, K.; Tonkonogi, M.; Soderlund, K. Energy supply and muscle fatigue in humans. Acta Physiologica Scandinavica. 1998, 162 (3): 261–6. doi:10.1046/j.1365-201X.1998.0298f.x. PMID 9578371. 
  • Saltin, Bengt; Gollnick, Philip D. Skeletal muscle adaptability: Significance for metabolism and performance. (编) Peachey, Lee D; Adrian, Richard H; Geiger, Stephen R. Handbook of Physiology. Baltimore: Williams & Wilkins. 1983: 540–55. OCLC 314567389.  Republished as: Saltin, Bengt; Gollnick, Philip D. Skeletal Muscle Adaptability: Significance for Metabolism and Performance. Comprehensive Physiology. 2011. doi:10.1002/cphy.cp100119. ISBN 978-0-470-65071-4. 
  • Thorstensson. Muscle strength, fibre types and enzyme activities in man. Acta physiologica Scandinavica. Supplementum. 1976, 443: 1–45. PMID 189574. 
  • Thorstensson, Alf; Sjödin, Bertil; Tesch, Per; Karlsson, Jan. Actomyosin ATPase, Myokinase, CPK and LDH in Human Fast and Slow Twitch Muscle Fibres. Acta Physiologica Scandinavica. 1977, 99 (2): 225–9. doi:10.1111/j.1748-1716.1977.tb10373.x. PMID 190869. 
  • Vanhelder, W. P.; Radomski, M. W.; Goode, R. C.; Casey, K. Hormonal and metabolic response to three types of exercise of equal duration and external work output. European Journal of Applied Physiology and Occupational Physiology. 1985, 54 (4): 337–42. doi:10.1007/BF02337175. PMID 3905393. 
  • Wells, JG; Balke, B; Van Fossan, DD. Lactic acid accumulation during work; a suggested standardization of work classification. Journal of applied physiology. 1957, 10 (1): 51–5. PMID 13405829. 
  • McArdle, William D; Katch, Frank I; Katch, Victor L. Exercise Physiology: Energy, Nutrition, and Human Performance. Philadelphia: Lea & Febiger. 1986. OCLC 646595478. 

外部链接[编辑]