水平丛

维基百科,自由的百科全书
跳转至: 导航搜索

数学微分几何领域,给定

π:EM,

光滑流形 M 上一个光滑纤维丛,则 E铅直丛 VE切丛 TE 的一个子丛,由与 EM 上的纤维相切的切向量组成。一个水平丛horizontal bundle)则是特别地选取 TE 的一个子丛使其为 VE 的补丛,换句话说,在每个纤维给出一个补空间

完全一般地,水平丛概念是表述纤维丛上埃雷斯曼联络的一种途径。但这个概念经常用于更确定的情形。

更具体的,如果 eE 满足

π(e)=xM

则在 e铅直空间vertical space) VeE 是纤维 Ex 穿过 e 的切空间 Te(Ex)。一个水平丛则确定了一个水平空间horizontal space)HeE 使得 TeE 是 VeE 与 HeE直和

如果 E 是一个G-丛则水平丛通常要求为 G-等变;更多细节参见联络。特别地,当 E标架丛便是这种情形,标架丛是流形的切空间的所有标架,而 G = GLn

参考文献[编辑]

  • Kobayashi, Shoshichi and Nomizu, Katsumi. Foundations of Differential Geometry, Vol. 1. Wiley-Interscience. 1996 (New edition). ISBN 0471157333.