无穷小应变理论 (infinitesimal strain theory)也稱為无限小应变理论 ,是连续介质力学 中描述固體形變 的數學分析法,適用在其形變量遠小於物體尺寸(無窮小量 )的情形,因此若是均質材料,可以假設材料每一點的結構性質(密度 及剛度 )都相等,不會隨變形而不同。
在此假設下,連續介质力學的方程可以簡化。此作法也稱為是小形變理論 、小位移理論 或小位移梯度理論 。无穷小应变理论和有限应变理论 的假設恰好相反,後者假設形變量沒有遠小於物體尺寸。
无穷小应变理论常用在土木工程 及機械工程 中,其中會進行結構的應力分析 ,而材料是用強度較高的混凝土 及钢 製成,而結構設計的目標也是在一般結構荷重 下,希望其形變量可以降到最小。不過若分析的結構物是較細較薄,較容易變形的元件(例如桿、平板及薄殼),用无限小应变理论來分析就不可靠了[ 1] 。
在連續體 的無限小變形中(位移梯度張量 遠小於1,也就是
‖
∇
u
‖
≪
1
{\displaystyle \|\nabla \mathbf {u} \|\ll 1}
),可以用有限應變理論中的任何一個有限應變張量(例如拉格朗日有限應變張量
E
{\displaystyle \mathbf {E} }
,或是尤拉有限應變張量
e
{\displaystyle \mathbf {e} }
)進行線性化。在線性化中,可以省略有限應變張量中的二次項或是非線性項,因此可得
E
=
1
2
(
∇
X
u
+
(
∇
X
u
)
T
+
(
∇
X
u
)
T
∇
X
u
)
≈
1
2
(
∇
X
u
+
(
∇
X
u
)
T
)
{\displaystyle \mathbf {E} ={\frac {1}{2}}\left(\nabla _{\mathbf {X} }\mathbf {u} +(\nabla _{\mathbf {X} }\mathbf {u} )^{T}+(\nabla _{\mathbf {X} }\mathbf {u} )^{T}\nabla _{\mathbf {X} }\mathbf {u} \right)\approx {\frac {1}{2}}\left(\nabla _{\mathbf {X} }\mathbf {u} +(\nabla _{\mathbf {X} }\mathbf {u} )^{T}\right)}
或
E
K
L
=
1
2
(
∂
U
K
∂
X
L
+
∂
U
L
∂
X
K
+
∂
U
M
∂
X
K
∂
U
M
∂
X
L
)
≈
1
2
(
∂
U
K
∂
X
L
+
∂
U
L
∂
X
K
)
{\displaystyle E_{KL}={\frac {1}{2}}\left({\frac {\partial U_{K}}{\partial X_{L}}}+{\frac {\partial U_{L}}{\partial X_{K}}}+{\frac {\partial U_{M}}{\partial X_{K}}}{\frac {\partial U_{M}}{\partial X_{L}}}\right)\approx {\frac {1}{2}}\left({\frac {\partial U_{K}}{\partial X_{L}}}+{\frac {\partial U_{L}}{\partial X_{K}}}\right)}
以及
e
=
1
2
(
∇
x
u
+
(
∇
x
u
)
T
−
∇
x
u
(
∇
x
u
)
T
)
≈
1
2
(
∇
x
u
+
(
∇
x
u
)
T
)
{\displaystyle \mathbf {e} ={\frac {1}{2}}\left(\nabla _{\mathbf {x} }\mathbf {u} +(\nabla _{\mathbf {x} }\mathbf {u} )^{T}-\nabla _{\mathbf {x} }\mathbf {u} (\nabla _{\mathbf {x} }\mathbf {u} )^{T}\right)\approx {\frac {1}{2}}\left(\nabla _{\mathbf {x} }\mathbf {u} +(\nabla _{\mathbf {x} }\mathbf {u} )^{T}\right)}
或
e
r
s
=
1
2
(
∂
u
r
∂
x
s
+
∂
u
s
∂
x
r
−
∂
u
k
∂
x
r
∂
u
k
∂
x
s
)
≈
1
2
(
∂
u
r
∂
x
s
+
∂
u
s
∂
x
r
)
{\displaystyle e_{rs}={\frac {1}{2}}\left({\frac {\partial u_{r}}{\partial x_{s}}}+{\frac {\partial u_{s}}{\partial x_{r}}}-{\frac {\partial u_{k}}{\partial x_{r}}}{\frac {\partial u_{k}}{\partial x_{s}}}\right)\approx {\frac {1}{2}}\left({\frac {\partial u_{r}}{\partial x_{s}}}+{\frac {\partial u_{s}}{\partial x_{r}}}\right)}
線性化意味著連續體中特定點的物質坐標(material coordinate)和空間坐標(spatial coordinate)差異很小,拉格朗日描述和尤拉描述近似相等。因此,物質位移梯度張量和空間位移梯度張量的分量也相近相等。可得
E
≈
e
≈
ε
=
1
2
(
(
∇
u
)
T
+
∇
u
)
{\displaystyle \mathbf {E} \approx \mathbf {e} \approx {\boldsymbol {\varepsilon }}={\frac {1}{2}}\left((\nabla \mathbf {u} )^{T}+\nabla \mathbf {u} \right)}
或
E
K
L
≈
e
r
s
≈
ε
i
j
=
1
2
(
u
i
,
j
+
u
j
,
i
)
{\displaystyle E_{KL}\approx e_{rs}\approx \varepsilon _{ij}={\frac {1}{2}}\left(u_{i,j}+u_{j,i}\right)}
其中
ε
i
j
{\displaystyle \varepsilon _{ij}}
是無穷小應變張量(也稱為柯西應變張量、線性應變張量、小應變張量)的分量。
ε
i
j
=
1
2
(
u
i
,
j
+
u
j
,
i
)
=
[
ε
11
ε
12
ε
13
ε
21
ε
22
ε
23
ε
31
ε
32
ε
33
]
=
[
∂
u
1
∂
x
1
1
2
(
∂
u
1
∂
x
2
+
∂
u
2
∂
x
1
)
1
2
(
∂
u
1
∂
x
3
+
∂
u
3
∂
x
1
)
1
2
(
∂
u
2
∂
x
1
+
∂
u
1
∂
x
2
)
∂
u
2
∂
x
2
1
2
(
∂
u
2
∂
x
3
+
∂
u
3
∂
x
2
)
1
2
(
∂
u
3
∂
x
1
+
∂
u
1
∂
x
3
)
1
2
(
∂
u
3
∂
x
2
+
∂
u
2
∂
x
3
)
∂
u
3
∂
x
3
]
{\displaystyle {\begin{aligned}\varepsilon _{ij}&={\frac {1}{2}}\left(u_{i,j}+u_{j,i}\right)\\&={\begin{bmatrix}\varepsilon _{11}&\varepsilon _{12}&\varepsilon _{13}\\\varepsilon _{21}&\varepsilon _{22}&\varepsilon _{23}\\\varepsilon _{31}&\varepsilon _{32}&\varepsilon _{33}\\\end{bmatrix}}\\&={\begin{bmatrix}{\frac {\partial u_{1}}{\partial x_{1}}}&{\frac {1}{2}}\left({\frac {\partial u_{1}}{\partial x_{2}}}+{\frac {\partial u_{2}}{\partial x_{1}}}\right)&{\frac {1}{2}}\left({\frac {\partial u_{1}}{\partial x_{3}}}+{\frac {\partial u_{3}}{\partial x_{1}}}\right)\\{\frac {1}{2}}\left({\frac {\partial u_{2}}{\partial x_{1}}}+{\frac {\partial u_{1}}{\partial x_{2}}}\right)&{\frac {\partial u_{2}}{\partial x_{2}}}&{\frac {1}{2}}\left({\frac {\partial u_{2}}{\partial x_{3}}}+{\frac {\partial u_{3}}{\partial x_{2}}}\right)\\{\frac {1}{2}}\left({\frac {\partial u_{3}}{\partial x_{1}}}+{\frac {\partial u_{1}}{\partial x_{3}}}\right)&{\frac {1}{2}}\left({\frac {\partial u_{3}}{\partial x_{2}}}+{\frac {\partial u_{2}}{\partial x_{3}}}\right)&{\frac {\partial u_{3}}{\partial x_{3}}}\\\end{bmatrix}}\end{aligned}}}
或者使用不同的表示方式:
[
ε
x
x
ε
x
y
ε
x
z
ε
y
x
ε
y
y
ε
y
z
ε
z
x
ε
z
y
ε
z
z
]
=
[
∂
u
x
∂
x
1
2
(
∂
u
x
∂
y
+
∂
u
y
∂
x
)
1
2
(
∂
u
x
∂
z
+
∂
u
z
∂
x
)
1
2
(
∂
u
y
∂
x
+
∂
u
x
∂
y
)
∂
u
y
∂
y
1
2
(
∂
u
y
∂
z
+
∂
u
z
∂
y
)
1
2
(
∂
u
z
∂
x
+
∂
u
x
∂
z
)
1
2
(
∂
u
z
∂
y
+
∂
u
y
∂
z
)
∂
u
z
∂
z
]
{\displaystyle {\begin{bmatrix}\varepsilon _{xx}&\varepsilon _{xy}&\varepsilon _{xz}\\\varepsilon _{yx}&\varepsilon _{yy}&\varepsilon _{yz}\\\varepsilon _{zx}&\varepsilon _{zy}&\varepsilon _{zz}\\\end{bmatrix}}={\begin{bmatrix}{\frac {\partial u_{x}}{\partial x}}&{\frac {1}{2}}\left({\frac {\partial u_{x}}{\partial y}}+{\frac {\partial u_{y}}{\partial x}}\right)&{\frac {1}{2}}\left({\frac {\partial u_{x}}{\partial z}}+{\frac {\partial u_{z}}{\partial x}}\right)\\{\frac {1}{2}}\left({\frac {\partial u_{y}}{\partial x}}+{\frac {\partial u_{x}}{\partial y}}\right)&{\frac {\partial u_{y}}{\partial y}}&{\frac {1}{2}}\left({\frac {\partial u_{y}}{\partial z}}+{\frac {\partial u_{z}}{\partial y}}\right)\\{\frac {1}{2}}\left({\frac {\partial u_{z}}{\partial x}}+{\frac {\partial u_{x}}{\partial z}}\right)&{\frac {1}{2}}\left({\frac {\partial u_{z}}{\partial y}}+{\frac {\partial u_{y}}{\partial z}}\right)&{\frac {\partial u_{z}}{\partial z}}\\\end{bmatrix}}}
進一步來說,因為形變梯度可以表示成
F
=
∇
u
+
I
{\displaystyle {\boldsymbol {F}}={\boldsymbol {\nabla }}\mathbf {u} +{\boldsymbol {I}}}
其中
I
{\displaystyle {\boldsymbol {I}}}
是二階單位張量,可得
ε
=
1
2
(
F
T
+
F
)
−
I
{\displaystyle {\boldsymbol {\varepsilon }}={\frac {1}{2}}\left({\boldsymbol {F}}^{T}+{\boldsymbol {F}}\right)-{\boldsymbol {I}}}
另外,根據拉格朗日有限應變張量及尤拉有限應變張量的通用表示法,可得
E
(
m
)
=
1
2
m
(
U
2
m
−
I
)
=
1
2
m
[
(
F
T
F
)
m
−
I
]
≈
1
2
m
[
{
∇
u
+
(
∇
u
)
T
+
I
}
m
−
I
]
≈
ε
e
(
m
)
=
1
2
m
(
V
2
m
−
I
)
=
1
2
m
[
(
F
F
T
)
m
−
I
]
≈
ε
{\displaystyle {\begin{aligned}\mathbf {E} _{(m)}&={\frac {1}{2m}}(\mathbf {U} ^{2m}-{\boldsymbol {I}})={\frac {1}{2m}}[({\boldsymbol {F}}^{T}{\boldsymbol {F}})^{m}-{\boldsymbol {I}}]\approx {\frac {1}{2m}}[\{{\boldsymbol {\nabla }}\mathbf {u} +({\boldsymbol {\nabla }}\mathbf {u} )^{T}+{\boldsymbol {I}}\}^{m}-{\boldsymbol {I}}]\approx {\boldsymbol {\varepsilon }}\\\mathbf {e} _{(m)}&={\frac {1}{2m}}(\mathbf {V} ^{2m}-{\boldsymbol {I}})={\frac {1}{2m}}[({\boldsymbol {F}}{\boldsymbol {F}}^{T})^{m}-{\boldsymbol {I}}]\approx {\boldsymbol {\varepsilon }}\end{aligned}}}
^ Boresi, Arthur P. (Arthur Peter), 1924-. Advanced mechanics of materials. Schmidt, Richard J. (Richard Joseph), 1954- 6th. New York: John Wiley & Sons. 2003: 62. ISBN 1601199228 . OCLC 430194205 .