塞尔日·兰

维基百科,自由的百科全书
(重定向自Serge Lang
跳转至: 导航搜索
Serge Lang
Serge Lang.jpg
Serge Lang (1927–2005)
出生 (1927-05-19)1927年5月19日
Paris, France
逝世 2005年9月12日(2005-09-12)(78歲)
Berkeley, California
居住地 United States
公民权 French American
母校 California Institute of Technology (B.A.)
Princeton University (PhD)
知名于 Work in number theory
奖项 Leroy P. Steele Prize (1999)
Cole Prize (1960)
科学生涯
研究領域 Mathematics
机构 University of Chicago
Columbia University
Yale University
论文 On Quasi Algebraic Closure(1951)
博士導師 Emil Artin
博士生 Minhyong Kim
Stephen Schanuel

塞尔日·兰(法语:Serge Lang,1927年5月19日-2005年9月12日)是美国数学家。

生平[编辑]

他在1951年由埃米尔·阿廷指导,获得普林斯顿大学的博士学位。

因他在代数的工作和他编写的多本教科书(包括影响颇大的Algebra)而闻名。他的教科书定位于纯数学,以习题原创闻名。根据一个1970年代在普林斯顿大学数学社群流传的逸闻,他的教科書至少一本是因为打赌而在一个周末写成。他是布尔巴基小组成员。他逝世时是耶鲁大学的数学荣誉教授。

作为数学阐述者的奖项[编辑]

兰教授给人的印象是热心与学生交流。他获得美国数学学会的Leroy P Steele Prize for Mathematical Exposition (1999)。在1960年,他获得第六个Frank Nelson Cole Prize in Algebra,嘉许他的论文Unramified class field theory over function fields in several variables (Annals of Mathematics, Series 2, volume 64 (1956), pp. 285–325)。那年Maxwell A. Rosenlicht也获奖。

行动主义[编辑]

他除了是数学家,也花很多时间参与政治。最为人注意的是,他认为有人为了达到他们目的错用科学或数学,他会揭露出来。1986年他挑战政治科学家塞缪尔·P·亨廷顿美国国家科学院院士提名,声称他的研究含有「伪装成科学的政治意见」。他的挑战成功了。

兰把他的政治通信「存档」,一部分在他的书Challenges(ISBN 0-387-94861-9)出版。后来兰把他的挑战伸延到人文学科。例如,他和耶鲁大学争论聘请科学史学家Daniel Kevles的决定,因为他不同意Kevles在他的书The Baltimore Case中的分析。

他的艾滋病异见者身份是他最具争议的政治立场;他坚持艾滋病由HIV引起的普遍看法没有充分实验支持,但因为政治或商业原因,质问这种看法而作的进一步实验遭到压制。他很公开强调这一点。

书目列表[编辑]

  • Introduction to Algebraic Geometry (1958)[1]
  • Abelian Varieties (1959)
  • Diophantine Geometry (1962)[2][3]
  • Introduction To Differentiable Manifolds (1962)[4]
  • A First Course in Calculus (1964), as Short Calculus (2001)
  • Algebraic Numbers (1964)
  • A Second Course in Calculus (Addison-Wesley, 1965)[5][6][7] ASIN B0007DW0KS
  • Algebra (1965) and many later editions
  • Algebraic Structures (1966)
  • Introduction to Diophantine Approximations (1966)
  • Introduction to Transcendental Numbers (1966)
  • Linear Algebra (1966)
  • Rapport sur la Cohomologie des Groupes (1966)[8] as Topics in Cohomology of Groups (1986)
  • A Complete Course in Calculus (1968)
  • Analysis I (1968)
  • Analysis II (1969)
  • Real Analysis (1969)
  • Algebraic Number Theory (1970)[9]
  • Introduction To Linear Algebra (1970)
  • Basic Mathematics (1971)
  • Differential Manifolds (1972)
  • Introduction to Algebraic and Abelian Functions (1972)
  • Calculus of Several Variables (1973)
  • Elliptic Functions (1973)[10]
  • SL2(R) (1975)[11]
  • Introduction to Modular Forms (1976)[12]
  • Complex Analysis (1977)
  • Cyclotomic Fields (1978)
  • Elliptic Curves: Diophantine Analysis (1978)[13]
  • Modular Units (1981) with Dan Kubert
  • The File: Case Study in Correction 1977–1979 (1981)
  • Undergraduate Analysis (1983)
  • Complex Multiplication (1983)
  • Fundamentals Of Diophantine Geometry (1983)
  • The Beauty of Doing Mathematics: Three Public Dialogues (1985)
  • Math!: Encounters with High School Students (1985)
  • Riemann-Roch Algebra (1985) with William Fulton
  • Introduction To Complex Hyperbolic Spaces (1987)[14]
  • Geometry (1988)
  • Introduction to Arakelov Theory (1988)[15]
  • Cyclotomic Fields II (1989)
  • Undergraduate Algebra (1990)
  • Real and Functional Analysis (1993)
  • Differential and Riemannian Manifolds (1995)
  • Basic Analysis of Regularized Series and Products (1993) with Jay Jorgenson
  • Challenges (1997)
  • Survey On Diophantine Geometry (1997)
  • Fundamentals of Differential Geometry (1999)
  • Math Talks for Undergraduates (1999)
  • Problems and Solutions for Complex Analysis (1999) with Rami Shakarchi
  • Collected Papers I: 1952–1970 (2000)
  • Collected Papers II: 1971–1977 (2000)
  • Collected Papers III: 1978–1990 (2000)
  • Collected Papers IV: 1990–1996 (2000)
  • Collected Papers V: 1993–1999 (Springer, 2000) ISBN 978-0387950303
  • Spherical Inversion on SLn(R) (2001) with Jay Jorgenson[16]
  • Posn(R) and Eisenstein Series (2005) with Jay Jorgenson
  • The Heat Kernel and Theta Inversion on SL2(C) (2008) with Jay Jorgenson
  • Heat Eisenstein series on SLn(C) (2009) with Jay Jorgenson


注释[编辑]

  1. ^ Rosenlicht, M. Review: Introduction to algebraic geometry. By Serge Lang (PDF). Bull. Amer. Math. Soc. 1959, 65 (6): 341–342. doi:10.1090/s0002-9904-1959-10361-x. 
  2. ^ Mordell, L. J. Review: Diophantine geometry. By Serge Lang (PDF). Bull. Amer. Math. Soc. 1964, 70 (4): 491–498. doi:10.1090/s0002-9904-1964-11164-2. 
  3. ^ Lang, Serge. Mordell's review, Siegel's letter to Mordell, Diophantine Geomertry, and 20th century mathematics (PDF). Gazette des mathématiciens. January 1995, (63): 17–36. 
  4. ^ Abraham, Ralph. Review: Introduction to differential manifolds. By Serge Lang (PDF). Bull. Amer. Math. Soc. 1964, 70 (2): 225–227. doi:10.1090/s0002-9904-1964-11089-2. 
  5. ^ Magill, K. D. Review of A Second Course in Calculus. The American Mathematical Monthly. 1965-01-01, 72 (9): 1048–1049. JSTOR 2313382. doi:10.2307/2313382. 
  6. ^ Meacham, R. C. Review of A Second Course in Calculus. Mathematics Magazine. 1966-01-01, 39 (2): 124–124. JSTOR 2688730. doi:10.2307/2688730. 
  7. ^ Niven, Ivan. Review of A Second Course in Calculus. Mathematics Magazine. 1970-01-01, 43 (5): 277–278. JSTOR 2688750. doi:10.2307/2688750. 
  8. ^ Hochschild, G. Review: Rapport sur la cohomologie des groupes by Serge Lang (PDF). Bull. Amer. Math. Soc. 1969, 75 (5): 927–929. doi:10.1090/s0002-9904-1969-12294-9. 
  9. ^ Corwin, Lawrence. Review: Algebraic Number Theory by Serge Lang (PDF). Bull. Amer. Math. Soc. 1972, 78 (5): 690–693. doi:10.1090/s0002-9904-1972-12984-7. 
  10. ^ Roquette, Peter. Review: Elliptic functions, by Serge Lang (PDF). Bull. Amer. Math. Soc. 1976, 82 (4): 523–526. doi:10.1090/s0002-9904-1976-14082-7. 
  11. ^ Langlands, R. P. SL2(R), by Serge Lang (PDF). Bull. Amer. Math. Soc. 1976, 82 (5): 688–691. doi:10.1090/s0002-9904-1976-14109-2. 
  12. ^ Terras, Audrey. Review: Introduction to modular forms, by Serge Lang (PDF). Bull. Amer. Math. Soc. (N.S.). 1980, 2 (1): 206–214. doi:10.1090/s0273-0979-1980-14722-9. 
  13. ^ Baker, Alan. Review: Elliptic curves: Diophantine analysis, by Serge Lang (PDF). Bull. Amer. Math. Soc. (N.S.). 1980, 2 (2): 352–354. doi:10.1090/s0273-0979-1980-14756-4. 
  14. ^ Green, Mark. Review: Introduction to complex hyperbolic spaces by Serge Lang. Bull. Amer. Math. Soc. (N.S.). 1988, 18 (2): 188–191. doi:10.1090/s0273-0979-1988-15644-3. 
  15. ^ Silverman, Joseph H. Review: Introduction to Arakelov theory, by Serge Lang (PDF). Bull. Amer. Math. Soc. (N.S.). 1989, 21 (1): 171–176. doi:10.1090/s0273-0979-1989-15806-0. 
  16. ^ Krötz, Bernhard. Spherical Inversion on SLn(R), by Jay Jorgenson and Serge Lang (PDF). Bull. Amer. Math. Soc. (N.S.). 2002, 40 (1): 137–142. doi:10.1090/s0273-0979-02-00962-x. 

外部链接[编辑]