Meixner-Pollaczek Polynomials animation
Meixner-Pollaczek Polynomials animation
梅西纳-珀拉泽克多项式 是一个以超几何函数 定义的正交多项式。
P
n
(
λ
)
(
x
;
ϕ
)
=
(
2
λ
)
n
n
!
e
i
n
ϕ
2
F
1
(
−
n
,
λ
+
i
x
;
2
λ
;
1
−
e
−
2
i
ϕ
)
{\displaystyle P_{n}^{(\lambda )}(x;\phi )={\frac {(2\lambda )_{n}}{n!}}e^{in\phi }{}_{2}F_{1}(-n,\lambda +ix;2\lambda ;1-e^{-2i\phi })}
P
n
λ
(
cos
ϕ
;
a
,
b
)
=
(
2
λ
)
n
n
!
e
i
n
ϕ
2
F
1
(
−
n
,
λ
+
i
(
a
cos
ϕ
+
b
)
/
sin
ϕ
;
2
λ
;
1
−
e
−
2
i
ϕ
)
{\displaystyle P_{n}^{\lambda }(\cos \phi ;a,b)={\frac {(2\lambda )_{n}}{n!}}e^{in\phi }{}_{2}F_{1}(-n,\lambda +i(a\cos \phi +b)/\sin \phi ;2\lambda ;1-e^{-2i\phi })}
∫
−
∞
∞
P
n
(
λ
)
(
x
;
ϕ
)
P
m
(
λ
)
(
x
;
ϕ
)
w
(
x
;
λ
,
ϕ
)
d
x
=
2
π
Γ
(
n
+
2
λ
)
(
2
sin
ϕ
)
2
λ
n
!
δ
m
n
{\displaystyle \int _{-\infty }^{\infty }P_{n}^{(\lambda )}(x;\phi )P_{m}^{(\lambda )}(x;\phi )w(x;\lambda ,\phi )dx={\frac {2\pi \Gamma (n+2\lambda )}{(2\sin \phi )^{2\lambda }n!}}\delta _{mn}}
连续双哈恩多项式 →梅西纳-珀拉泽克多项式
lim
t
→
∞
S
n
(
(
x
−
t
)
2
;
λ
+
i
t
,
λ
−
i
t
,
t
c
o
s
ϕ
t
n
N
!
=
P
n
(
λ
)
(
x
;
ϕ
(
s
i
n
ϕ
)
n
{\displaystyle \lim _{t\to \infty }{\frac {S_{n}((x-t)^{2};\lambda +it,\lambda -it,tcos\phi }{t^{n}N!}}={\frac {P_{n}^{(\lambda )}(x;\phi }{(sin\phi )^{n}}}}
连续哈恩多项式 →梅西纳-珀拉泽克多项式
lim
t
→
∞
S
n
(
(
x
+
t
)
;
λ
+
i
t
,
t
a
n
ϕ
,
λ
−
i
t
,
t
t
a
n
ϕ
t
n
N
!
=
P
n
(
λ
)
(
x
;
ϕ
(
c
o
s
ϕ
)
n
{\displaystyle \lim _{t\to \infty }{\frac {S_{n}((x+t);\lambda +it,tan\phi ,\lambda -it,ttan\phi }{t^{n}N!}}={\frac {P_{n}^{(\lambda )}(x;\phi }{(cos\phi )^{n}}}}
梅西纳-珀拉泽克多项式→拉盖尔多项式
梅西纳-珀拉泽克多项式→埃尔米特多项式
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , 2010, ISBN 978-3-642-05013-8 , MR 2656096 , doi:10.1007/978-3-642-05014-5
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., Pollaczek Polynomials , Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions , Cambridge University Press, 2010, ISBN 978-0521192255 , MR 2723248
Meixner, J., Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion, J. London Math. Soc., 1934, s1–9 : 6–13, doi:10.1112/jlms/s1-9.1.6
Pollaczek, Félix, Sur une généralisation des polynomes de Legendre , Les Comptes rendus de l'Académie des sciences , 1949, 228 : 1363–1365 [2015-01-27 ] , MR 0030037 , (原始内容存档 于2017-08-06)