跳转到内容

冰冻圈

维基百科,自由的百科全书


冰雪圈(英语:cryosphere),这个名词来自于希腊文中的κρύος(cryos),指"寒冷"、"霜"或是"冰";以及σφαῖρα(sphaira),指"球体"[1]。冰雪圈是用来描述在地表上,固态形式出现的区域,包括了:海冰、湖冰、河冰、积冰河冰帽冰盖冻土

冰雪圈的性质决定了它与水圈有很大的重叠。 冰冻圈是全球气候系统的组成部分,通过对地表能量、水分通量、降水水文大气海洋循环的影响,产生重要的联系和回馈。 这些回馈过程使得冰冻圈对全球气候和全球变化中的气候模式英语Climate_model反应起著重要作用。其中一个直观的例子是:深色的海洋表面通常只反射6%的太阳辐射,而冰可以反射50%~70%。[2]冰消学(deglaciation)描述冰雪圈特征的衰退。冰雪学(cryology)则是对冰雪圈的研究。此外,根据存在的时间尺度,地球上的冰雪圈可分为间断的、短期的、季节性的、多年的和若干世纪的五种类型。

组成

[编辑]

地球上的冰雪圈主要由下列几种组成:

短期的、季节性的和多年的雪盖,它积累流散的冰,并使水汽凝结;在季节性冻结的土壤和山石的裂缝和空隙中包含着的冰;季节性和多年的淡水和咸水冰盖;季节性和多年的地表和地下水冰冻;极地半岛和大陆的山地冰川和雪盖;山石深层含有不同来源的冻结冰,多年、世纪或数千年期间都不融化;含有一固体状态存在的大气水分的移动性云系统。

冰雪圈组成的概述。分别包括海冰冰棚冰盖冰河冰帽连续永久冻土带、不连续永久冻土带、孤立永久冻土带。

分布

[编辑]

地表上发现的固态水主要为积、湖泊和河流中的淡水海冰冰川冰盖冻土永久冻土。 每个冰冻圈子系统中水的停留时间差异很大。积雪和淡水冰基本上是季节性的;除了北冰洋中心的海冰以外,绝大多数海冰只会持续几年。然而,冰川、冰盖或底土冰中的水分子可能会冻结10-10000年或甚至更长时间。南极洲东部部分地区的冰层年龄可能接近100万年。

世界上大部分的冰量都是在南极洲,尤其是东南极冰盖。不过要是从面积来看,北半球冬季积雪面积最大,在1月份平均占半球面积的23%。

冰雪学

[编辑]

冰和雪的气候作用,与其独特的物理特性相关。若具备观察且模拟冰雪覆盖程度、厚度和物理性质(辐射与热)的能力,对气候研究具有特殊的意义。

冰和雪的几种基本物理性质调节地表和大气之间的能量交换。最重要的几个特性是表面反射率(反照率),传热能力热扩散率)和改变状态的能力(潜热)。这些物理性质以及表面粗糙度、发射率介电特性对于从太空中观察冰和雪很重要。例如,表面粗糙度通常是决定雷达背向散射英语Backscatter强度的主要因素[3]晶体结构、密度、长度和液态水含量等物理性质,则是影响热与水的转移,以及微波能量散射的重要因素。

入射太阳辐射的表面反射率对于表面能平衡(SEB)是重要的,这是太阳辐射反射与入射的比,通常称为反照率气候学家主要关注电磁波谱短波(300-3500奈米)部分的反照率,与主要太阳能输入吻合。通常,除了森林区域,未融积雪覆盖表面的反照率很高(可达80-90%)。冰和雪的反照率,导致秋季春季高纬度地区的表面反射率迅速变化,但这种变化的总体气候意义在空间和时间上会被云量所调节。(行星反照率主要由云量决定,以及冬季在高纬度地区接收到的太阳辐射量较少。)夏季秋季北冰洋高平均云量的时期,因此反照率回馈与大面积海冰分布的季节性变化大幅降低。格罗伊斯曼等人观察到,在春季(4月至5月),太阳辐射在积雪覆盖地区最大时,积雪对地球辐射平衡影响最大[4]

冰雪圈组成的热性质也具有重要的气候结果。热扩散率表示温度波穿透物质的速度。冰和雪在热扩散方面的效率比空气低很多个数量级。积雪隔离地面,海冰隔离海洋,使地表-大气界面的热通量和水气通量去耦合。对于厚度30-40公分以下的薄冰,热通量仍然是可观的,但只要有薄冰存在,就能消除水面的水分流失。然而,即使在冰层上有少量的雪,也将显著地减少热通量,并降低冰的增长速度。雪的绝热效果也对水循环有很大的影响。在非永久冻土区域,雪的绝热效果使得只有接近表层的地面冻结,深水土壤排水不会间断[5]

冰和雪在冬季可以避免地表能量大量损失,但因为冰的融化也需要大量能量(融化潜热,0℃时为3.34×105J / kg),它们也延迟了春季夏季的回暖。然而,在广布冰或雪的地区,大气的静态稳定性很强,倾向于将即时冷却效果限制在较浅的层,使相关的大气异常通常是短暂的、本地局部尺度的[6] 。世界上一些地区,如欧亚大陆,已知厚重积雪和春季潮湿土壤相关的冷却可以调节夏季季风的循环[7]。古茨勒和普雷斯顿也在美国西南部提出了相似的雪-夏季循环回馈的证据[8]

参见

[编辑]

参考资料

[编辑]
  1. ^ σφαῖρα页面存档备份,存于互联网档案馆), Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  2. ^ Thermodynamics: Albedo | National Snow and Ice Data Center. nsidc.org. [2021-12-06]. (原始内容存档于2020-06-12). 
  3. ^ Hall, D. K., 1996: Remote sensing applications to hydrology: imaging radar. Hydrological Sciences, 41, 609-624.
  4. ^ Groisman, P. Ya, T. R. Karl, and R. W. Knight, 1994a: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 363, 198-200.
  5. ^ Lynch-Stieglitz, M., 1994: The development and validation of a simple snow model for the GISS GCM. J. Climate, 7, 1842-1855.
  6. ^ Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689-706.
  7. ^ Vernekar, A. D., J. Zhou, and J. Shukla, 1995: The effect of Eurasian snow cover on the Indian monsoon. J. Climate, 8, 248-266.
  8. ^ Gutzler, D. S., and J. W. Preston, 1997: Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett., 24, 2207-2210.