在图论中,图所对应的线图是一张能够反映中各边邻接性的图,记作。简单来说,将中的每条边各自抽象成一个顶点;如若原图中两条边相邻,那么就给线图中对应顶点之间连接一条边。因为线图将原图的边化作了顶点,所以也可以将其视作原图的一种对偶。
哈斯勒·惠特尼证明了:假定图是连通的,那么除了一种特殊情况外,我们总能根据线图的结构还原出的结构[1]。以该定理为中介,可以证明线图的许多其它性质。线图总是无爪图,即线图的所有导出子图均不是。
图的线图定义如下:
- 的一个顶点对应的一边
- 的顶点相邻若且唯若它们在对应的边相邻(有公共顶点)。
该定义也可以用图论的语言表述如下:设,那么,且。
下面的例子演示了由原图生成线图的流程。
根据线图的定义,若性质/概念P仅取决于原图中边的邻接性,那么P便可以转移(或者说对偶)到线图上去变成性质/概念P',刻画线图顶点的邻接属性。例如,图中的一个匹配指的是图中一组不相交的边,把这一概念平移到线图上去,就等价于线图的一组不相邻的顶点——用术语来说即线图上的一个独立集。
下面就列举了原图和线图之间的若干联系:
- 若原图是连通的,线图也是。
- 若两个图同构,那么它们的线图也同构。
- 若的顶点数和边数分别为和,那么的顶点数和边数分别是和。
- ,即原图的边色数等于线图的点色数。
- 中的一个匹配对应了中的一个独立集,且其大小相等。于是,中最大匹配的大小等于最大独立集的大小。借助这一关系,可以通过求解后者来求解前者,但反之不总是可行,因为并非所有图都能表示为某个的线图。在计算机科学中,最大匹配问题和最大独立集问题是两个重要的问题。前者已经被高效解决(Edmonds' Blossom Algorithm);而后者则是NP完全问题,被普遍认为无法高效求解。
- 若存在欧拉回路,则存在哈密顿回路,但反之不然。
惠特尼同构定理[1]阐述了以下事实:设有连通图和且它们均不是三角形或爪形。如果,那么。也就是说,除了极特殊的情形,图的结构可以由线图的结构中唯一地恢复出来。
任何的线图都是无爪的,亦即不包含作为导出子图。因此,任意含有偶数个顶点的连通线图都存在完美匹配。
线图的邻接矩阵的全部特征值都不小于-2。这是因为,其中是原图的关联矩阵(incidence matrix)。又由于矩阵是半正定的,所以的任何特征值均满足。
Beineke给出了线图的一种等价刻画:是某图的线图当且仅当不包含九种类型的导出子图(见右图)。[2]
如果的最小度至少为5,那么只有左边一列和右边一列是必要的。换言之,此时,是某图的线图当且仅当不包含六种类型的导出子图(见右图的左边一列和右边一列)。
- ^ 1.0 1.1 Whitney, Hassler. Congruent Graphs and the Connectivity of Graphs. American Journal of Mathematics. 1932-01, 54 (1): 150 [2020-10-23]. doi:10.2307/2371086. (原始内容存档于2020-10-26).
- ^ Beineke, Lowell W. Characterizations of derived graphs. Journal of Combinatorial Theory. 1970-09-01, 9 (2): 129–135 [2020-10-23]. ISSN 0021-9800. doi:10.1016/S0021-9800(70)80019-9. (原始内容存档于2020-10-30) (英语).