在數學中,完全平方有兩個含義:
- 一個完全平方是可以表示成另一個整數的平方的正整數,也就是說,這個正整數可以寫成n2的形式,其中n是整數。
- 例如:1, 4, 9, 16, 25, 36, 49, ... 參見平方數。
完全平方可以分解為如下數式:
1=1×1=1²,
4=2×2=2²,
9=3×3=3²...等
- 可以分解成其它表達式的平方的算數表達式(稱為因式分解),例如:(a ± b)2 =a2 ± 2ab + b2 。(參見和平方或差平方或平方)
整數相乘可以完全的寫成兩個平方的差。
例如:
一般的,兩個數的乘積等於這兩個數和的平均值的平方減差的平均值的平方。
在速算時,運用這個關係式,兩個接近的大數的乘法可以轉換成平方的減法。這樣只要記住相對來說比較少的平方數表,就可以快捷地計算乘積。
如果與一奇一偶,為了避免出現所謂的「半整數」,可以運用以下技巧:
例子: