非厄米量子力学
PT 对称性最初是被当作非厄米量子力学中的一个特殊系统而进行研究的, [1] [2]此时哈密顿量不是厄米的。 在1998 年,物理学家 Carl Bender 和他前研究生 Stefan Boettcher 在《物理评论快报》上发表了一篇量子力学论文《具有 PT 对称性的非厄米哈密顿量的实谱》。 [3]在本文中,作者发现具有 PT 对称性(需要在宇称反转和时间反演对称算子之同时作用下的不变性)的非厄米哈密顿量也可能拥有实数谱(否则非厄米哈密顿量能谱一般是复数)。在正确定义的内积下,PT 对称哈密顿量的本征函数具有正范数并表现出幺正时间演化,满足量子理论的要求。 [4] Bender 因这个工作获得了 2017 年丹尼·海涅曼数学物理奖。 [5]
一个与非厄米量子力学密切关联的概念是赝厄米算子,物理学家 保罗·狄拉克 [6]、 沃尔夫冈·泡利 [7]以及李政道、吉安·卡罗·威克 [8]曾考虑过此概念。数学家 马克·克林 等人几乎同时将 赝厄米算子作为他们在线性动力系统的研究中的 G-Hamiltonian 来发现(或说是重新发现) [9] [10] [11] [12]。这里赝厄米性和 G-Hamiltonian 之间的等价性很容易建立。 [13]
在 2002 年,阿里·穆斯塔法扎德(Ali Mostafazadeh)证明,每个具有实谱的非厄米哈密顿算子都是赝厄米算子。他发现可对角化的 PT 对称非厄米哈密顿量都属于赝厄米哈密顿量。 [14] [15] [16]然而,这个结果没有太大的帮助,因为基本上有趣的物理现象都发生在独特点处,而在这点处的哈密顿量不可被对角化,或者说是缺陷的[17] [18] 。最近证明,在有限维数中,不管是否可以被对角化,PT 对称性都蕴含了赝厄米性。 [13]这表明在独特点处 PT 对称性破缺的机制,也就是两个具有相反符号的本征模式间在该点处发生的 Krein 碰撞。
2005 年,Gonzalo Muga 的研究组将 PT 对称性的概念引入了光学领域,指出 PT 对称性对应于增益和损耗的平衡。 [19] 在 2007 年,物理学家 Demetrios Christodoulides 和他的合作者进一步研究了 PT 对称性在光学中的意义。 [20] [21]接下来的几年在被动和主动系统中, PT 对称性也被实验首次展现。 [22] [23] 此外 PT 对称性的概念也被应用于经典力学、超材料、电路和核磁共振。 [24] [20] 在2017 年, Dorje Brody 和 Markus Müller 提出了一个“形式上满足希尔伯特-波利亚猜想的条件”的 PT 对称的非厄米哈密顿量。 [25] [26]
参考
[编辑]- ^ N. Moiseyev, "Non-Hermitian Quantum Mechanics", Cambridge University Press, Cambridge, 2011
- ^ Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects. Wiley.com. 2015-07-20 [2018-06-12]. (原始内容存档于2021-11-28) (美国英语).
- ^ Bender, Carl M.; Boettcher, Stefan. Real Spectra in Non-Hermitian Hamiltonians Having $\mathsc{P}\mathsc{T}$ Symmetry. Physical Review Letters. 1998-06-15, 80 (24): 5243–5246. Bibcode:1998PhRvL..80.5243B. S2CID 16705013. arXiv:physics/9712001 . doi:10.1103/PhysRevLett.80.5243.
- ^ Bender, Carl M. Making sense of non-Hermitian Hamiltonians. Reports on Progress in Physics. 2007, 70 (6): 947–1018. Bibcode:2007RPPh...70..947B. ISSN 0034-4885. S2CID 119009206. arXiv:hep-th/0703096 . doi:10.1088/0034-4885/70/6/R03.
- ^ Dannie Heineman Prize for Mathematical Physics. [2023-01-23]. (原始内容存档于2020-10-22).
- ^ Dirac, P. A. M. Bakerian Lecture - The physical interpretation of quantum mechanics. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 18 March 1942, 180 (980): 1–40. Bibcode:1942RSPSA.180....1D. doi:10.1098/rspa.1942.0023 .
- ^ Pauli, W. On Dirac's New Method of Field Quantization. Reviews of Modern Physics. 1 July 1943, 15 (3): 175–207. Bibcode:1943RvMP...15..175P. doi:10.1103/revmodphys.15.175.
- ^ Lee, T.D.; Wick, G.C. Negative metric and the unitarity of the S-matrix. Nuclear Physics B. February 1969, 9 (2): 209–243. Bibcode:1969NuPhB...9..209L. doi:10.1016/0550-3213(69)90098-4.
- ^ M. G. Krein, “A generalization of some investigations of A. M. Lyapunov on linear differential equations with periodic coefficients,” Dokl. Akad. Nauk SSSR N.S. 73, 445 (1950) (Russian).
- ^ M. G. Krein, Topics in Differential and Integral Equations and Operator Theory (Birkhauser, 1983).
- ^ I. M. Gel’fand and V. B. Lidskii, “On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients,” Usp. Mat. Nauk 10:1(63), 3−40 (1955) (Russian).
- ^ V. Yakubovich and V. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975), Vol. I.
- ^ 13.0 13.1 Zhang, Ruili; Qin, Hong; Xiao, Jianyuan. PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability. Journal of Mathematical Physics. 2020-01-01, 61 (1): 012101 [2023-01-23]. Bibcode:2020JMP....61a2101Z. ISSN 0022-2488. S2CID 102483351. arXiv:1904.01967 . doi:10.1063/1.5117211. (原始内容存档于2023-01-23) (英语).
- ^ Mostafazadeh, Ali. Pseudo-Hermiticity versus symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics. 2002, 43 (1): 205–214. Bibcode:2002JMP....43..205M. ISSN 0022-2488. S2CID 15239201. arXiv:math-ph/0107001 . doi:10.1063/1.1418246.
- ^ Mostafazadeh, Ali. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. Journal of Mathematical Physics. 2002, 43 (5): 2814–2816. Bibcode:2002JMP....43.2814M. ISSN 0022-2488. S2CID 17077142. arXiv:math-ph/0110016 . doi:10.1063/1.1461427.
- ^ Mostafazadeh, Ali. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. Journal of Mathematical Physics. 2002, 43 (8): 3944–3951. Bibcode:2002JMP....43.3944M. ISSN 0022-2488. S2CID 7096321. arXiv:math-ph/0107001 . doi:10.1063/1.1489072.
- ^ Bergholtz, Emil J.; Budich, Jan Carl; Kunst, Flore K. Exceptional topology of non-Hermitian systems. Reviews of Modern Physics. 2021-02-24, 93 (1): 015005. Bibcode:2021RvMP...93a5005B. S2CID 209444748. arXiv:1912.10048 . doi:10.1103/RevModPhys.93.015005.
- ^ Ashida, Yuto; Gong, Zongping; Ueda, Masahito. Non-Hermitian physics. Advances in Physics (Informa UK Limited). 2020-07-02, 69 (3): 249–435. ISSN 0001-8732. doi:10.1080/00018732.2021.1876991.
- ^ Ruschhaupt, A; Delgado, F; Muga, J G. Physical realization of -symmetric potential scattering in a planar slab waveguide. Journal of Physics A: Mathematical and General. 2005-03-04, 38 (9): L171–L176. ISSN 0305-4470. S2CID 118099017. arXiv:1706.04056 . doi:10.1088/0305-4470/38/9/L03.
- ^ 20.0 20.1 Bender, Carl. PT symmetry in quantum physics: from mathematical curiosity to optical experiments. Europhysics News. April 2016, 47, 2 (2): 17–20 [2023-01-23]. Bibcode:2016ENews..47b..17B. doi:10.1051/epn/2016201. (原始内容存档于2019-10-30).
- ^ Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Musslimani, Z. H. Beam Dynamics in $\mathcal{P}\mathcal{T}$ Symmetric Optical Lattices. Physical Review Letters. 2008-03-13, 100 (10): 103904. Bibcode:2008PhRvL.100j3904M. PMID 18352189. doi:10.1103/PhysRevLett.100.103904.
- ^ Guo, A.; Salamo, G. J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G. A.; Christodoulides, D. N. Observation of $\mathcal{P}\mathcal{T}$-Symmetry Breaking in Complex Optical Potentials. Physical Review Letters. 2009-08-27, 103 (9): 093902. Bibcode:2009PhRvL.103i3902G. PMID 19792798. doi:10.1103/PhysRevLett.103.093902.
- ^ Rüter, Christian E.; Makris, Konstantinos G.; El-Ganainy, Ramy; Christodoulides, Demetrios N.; Segev, Mordechai; Kip, Detlef. Observation of parity–time symmetry in optics. Nature Physics. March 2010, 6 (3): 192–195. Bibcode:2010NatPh...6..192R. ISSN 1745-2481. doi:10.1038/nphys1515 .
- ^ Miller, Johanna L. Exceptional points make for exceptional sensors. Physics Today. October 2017, 10, 23 (10): 23–26. Bibcode:2017PhT....70j..23M. doi:10.1063/PT.3.3717 .
- ^ Bender, Carl M.; Brody, Dorje C.; Müller, Markus P. Hamiltonian for the Zeros of the Riemann Zeta Function. Physical Review Letters. 2017-03-30, 118 (13): 130201. Bibcode:2017PhRvL.118m0201B. PMID 28409977. S2CID 46816531. arXiv:1608.03679 . doi:10.1103/PhysRevLett.118.130201.
- ^ Quantum Physicists Attack the Riemann Hypothesis | Quanta Magazine. Quanta Magazine. [2018-06-12]. (原始内容存档于2023-07-27).