跳至內容

埃利·嘉當

維基百科,自由的百科全書
埃利·嘉當
出生(1869-04-09)1869年4月9日
法國薩瓦(Savoie)的多洛姆厄(Dolomieu)
逝世1951年5月6日(1951歲—05—06)(82歲)
法國巴黎
居住地法國
母校巴黎大學
知名於李群 (Cartan's theorem)
向量空間外代數
微分幾何
狹義廣義相對論
微分形式
量子力學 (spinor, rotating vectors)
配偶瑪麗-露易絲·比安科尼(Marie-Louise Bianconi)
兒女亨利·嘉當
讓·嘉當(Jean Cartan)
路易·嘉當(Louis Cartan)
獎項Leconte Prize (1930)
Lobachevsky Prize (1937)
President of the French Academy of Sciences (1946)
皇家學會院士 (1947)
科學生涯
研究領域數學物理
機構巴黎大學
巴黎高等師範學校
論文Sur la structure des groupes de transformations finis et continus(1894)
博士導師讓·加斯東·達布
馬里烏斯·索菲斯·李
博士生夏爾·埃雷斯曼
Mohsen Hashtroodi
矢野健太郎
其他著名學生陳省身

埃利·約瑟夫·嘉當(法語:Élie Joseph Cartan,1869年4月9日─1951年5月6日),法國數學家嘉當又譯卡當卡坦。他在李群理論及其幾何應用方面奠定基礎[1]。他也對數學物理微分幾何群論做出了重大貢獻。埃利·嘉當廣泛認為是20世紀最偉大的數學家之一[2]

生平

[編輯]

嘉當生於薩瓦的多洛姆厄,在1888年成為巴黎的巴黎高師的一名學生。在1894年取得博士學位後,他在蒙皮立里昂任教,並於1903年在南錫當上教授。他在1909年到巴黎任教,並於1912年成為教授,而在1942年退休。他卒於巴黎。數學家亨利·嘉當是他的兒子。華裔數學家陳省身是嘉當的學生,嘉當每兩星期約陳省身去他家裡談一次,每次一小時。

工作

[編輯]

據他自己在「科研簡介」(Notice sur les travaux scientifiques)所作的描述,他的工作(總數達186,發表於1893-1947年間)的主題是李群的理論。他從在復的簡單李代數上的基礎材料上的工作開始,把恩格爾(Christian Engel)和基靈(Wilhelm Killing)先前的工作整理起來。這被證明是有決定性意義的,至少對於分類來講,他鑑定出4個主要的族和5個特殊情況。他也引入了代數群的概念,它在1950年之前並沒有被認真的發展過。

他也定義了反對稱微分形式的一般概念,以我們現在所使用的風格;他通過馬尤厄-嘉當方程處理李群的方式要用到2-形式來表達。那時,稱為Pfaffian系統(也就是用1-形式表達的1階微分方程組)的概念很常用;通過引入表示導數的新變量,和額外的微分形式,他們可以表述很一般的偏微分方程(PDE)系統。嘉當加入了外導數,作為一個完全幾何式的坐標無關的操作。這很自然導致了對於一般的p討論p-形式的需要。嘉當描述了Riquier的一般PDE理論對他的影響。

基於這些基礎,即李群和微分形式,他繼續深入完成了大量工作,以及一些通用的技術,例如移動標架法,這些逐漸融入到數學的主流中。

在「科研簡介」中,他把自己的工作分成15個領域。用現代術語來描述,他們是:

  1. 李群
  2. 李群表示
  3. 超複數(Hypercomplex number), 除法代數(division algebra)
  4. PDE系統, Cartan-Kähler定理
  5. 等價性理論
  6. 可積系統,延長理論(theory of prolongation)和對合系統(systems in involution)。
  7. 無窮維群和偽群
  8. 微分幾何和活動標架法
  9. 一般化空間及其上的結構群和聯絡嘉當聯絡和樂(holonomy),外爾張量
  10. 李群的幾何和拓撲
  11. 黎曼幾何
  12. 對稱空間
  13. 緊群的拓撲和它們的齊性空間
  14. 積分不變量和經典力學
  15. 相對論, 旋量

這些課題的大部分被後來的數學家完整的研究了。但不是全部:嘉當自己的方法驚人的統一,但大部分的後續工作可以說失去了他的特色。也就是說,變得更代數化。

看看這些不太主流的領域:

  • PDE理論必須包含奇異解(也就是包絡),例如在Clairaut方程中所見到的那樣;
  • 延長方法應該在迴旋系統中中止(這是解析理論,而不是光滑理論,並導向形式化可積性理論和Spencer上同調);
  • 等效性問題,如他所說,是通過把結構的圖像變成微分系統的積分流形來建立它們的微分同胚(並由此發現不變量);
  • 活動標架法,不但和主叢和它們的聯絡有關,也需要使用和幾何相適應的標架;
  • 現在,埃雷斯曼jet叢方法被用於把切觸作為系統化的等價關係。

所以,從某種意義上來說,嘉當的工作的獨特的一面仍然正在被數學家們所消化。這可以在諸如變分法Bäcklund變換和微分系統的一般理論之類的領域中不斷的見到;大致來講,這些是微分代數的那些感到現存的伽羅瓦理論所導出的對稱性模型過於狹窄並需要使用和關係的範疇更類似的東西的部分領域。

參看

[編輯]

參考資料

[編輯]
  1. ^ Pascual Juan Carlos Navarro; Kaidi El Amin. Advanced Courses Of Mathematical Analysis V - Proceedings Of The Fifth International School. World Scientific. 2016: 125–. 
  2. ^ O'Connor, J J; Robertson, E F. Great Mathematicians of the 20th century (PDF). sinbad.bplaced.net. 1999 [2020-05-10]. (原始內容存檔 (PDF)於2020-11-25).