跳至內容

順序優先法

維基百科,自由的百科全書

順序優先法(OPA)是一種多準則決策分析方法英語Multiple-criteria decision analysis(multi-criteria decision-making ,MCDM),有助於解決具有偏好關係集體決策問題。

描述

[編輯]

大多數的多準則決策分析方法,如層次分析法(analytic hierarchy Process, AHP)和網絡分析法英語Analytic network process(Analytic Network Process, ANP),是以成對比較矩陣為基礎的[1]

決策問題
決策問題[2]

該方法使用線性規劃方法同時計算專家、評價指標和備選方案的權重[2]。在OPA方法中使用序數數據英語Ordinal data的主要原因是與涉及人類的群體決策問題中使用的精確比例相比,序數數據的可及性和準確性[3]

在現實世界中,專家們可能對某一選擇或評價指標沒有足夠的了解。這種情況下,問題的輸入數據是不完整的,此時需要在OPA線性規劃模型中刪除與評價指標或備選方案相關的約束條件[4]

近年來,各種類型的數據歸一化方法被應用於多準則決策方法 (multi-criteria decision-making ,MCDM) 中。Palczewski和 Satabun表明,使用各種數據歸一化方法可以改變多準則決策方法的最終排名[5]。Javed 及其同事表明,可以通過避免數據歸一化來解決多準則決策問題[6]。不需要對偏好關係進行歸一化,因此,OPA方法不需要數據歸一化[7]

OPA方法

[編輯]

OPA模型是一個線性規劃模型,可以利用單純形法來解決。該方法的步驟如下:[8][9][2]

第一步: 確定專家,並根據工作經驗、教育資格等確定專家的優先次序。

第二步: 確定評價指標,並確定每個專家對指標的偏好。

第三步: 確定備選方案,並由每個專家確定在每一評價指標下備選方案的偏好。

第四步: 構建以下線性規劃模型,並通過適當的優化軟體如LINGO、GAMS、MATLAB等進行求解。

在上述模型中。代表專家的等級, 代表指標的等級,代表備選方案的等級。而代表專家i在評價指標j下備選方案k的權重。在解決OPA線性規劃模型後,每個備選方案的權重由以下公式計算。

每個評價指標的權重按以下公式計算。

每個專家的權重按以下公式計算。

例子

[編輯]
例子的決策問題
例子的決策問題

假設要調查買房子的問題[10]。在這個決策問題中,有兩位專家,同時有兩個評價指標,即成本(c)和建築質量(q),為房屋的選擇提供標準。另一方面,有三所房子(h1,h2,h3)可供購買。第一個專家(x)有三年的工作經驗,第二個專家(y)有兩年的工作經驗。該問題的結構如圖所示。

第 1 步:第一位專家(x)比專家(y)有更多經驗,因此 x>y。

第 2 步:專家對評價指標的偏好總結在下表中。

專家對評價指標的意見
評價指標 專家(x) 專家(y)
c 1 2
q 2 1

第 3 步:專家對備選方案的偏好總結在下表中。

專家對備選方案的意見
備選方案 專家(x) 專家(y)
c q c q
h1 1 2 1 3
h2 3 1 2 1
h3 2 3 3 2

第 4 步:根據輸入數據形成 OPA 線性規劃模型,具體如下。

用優化軟體求解上述模型後,得到專家、評價指標和備選方案的權重如下。

因此,房子1(h1)被認為是最佳選擇。此外,可以認為,評價指標成本(c)比評價指標建築質量(q)更重要。另外,根據專家的權重,可以認為,與專家(y)相比,專家(x)對最終選擇的影響更大。

應用

[編輯]

OPA方法在各個研究領域的應用總結如下。

農業、製造業、服務業

建築行業

能源與環境

醫療保健

信息技術

交通運輸

延伸

[編輯]

以下是 OPA 方法的幾個擴展。

  • 灰色順序優先法 (OPA-G)[7]
  • 模糊順序優先法 (OPA-F)[28]
  • OPA 中的置信度測量[8]
  • 魯棒順序優先法 (OPA-R)[9]
  • 混合 OPA-模糊 EDAS[13]
  • 混合 DEA-OPA 模型[11]
  • 混合型 MULTIMOORA-OPA[38]
  • 團體加權順序優先法 (GWOPA)[39]

軟體

[編輯]

以下非盈利工具可用於解決使用 OPA 方法的 MCDM 問題。

  • 基於網絡的解算器[40]
  • 基於 Excel 的解算器[41]
  • 基於林格的解算器[42]
  • 基於 Matlab 的求解器[43]

參考文獻

[編輯]
  1. ^ Penadés-Plà, Vicent; García-Segura, Tatiana; Martí, José V.; Yepes, Víctor. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability. 2016-12, 8 (12) [2022-10-31]. ISSN 2071-1050. doi:10.3390/su8121295. (原始內容存檔於2022-11-22) (英語). 
  2. ^ 2.0 2.1 2.2 Ataei, Younes; Mahmoudi, Amin; Feylizadeh, Mohammad Reza; Li, Deng-Feng. Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Applied Soft Computing. 2020-01-01, 86 [2022-10-31]. ISSN 1568-4946. doi:10.1016/j.asoc.2019.105893. (原始內容存檔於2022-10-18) (英語). 
  3. ^ Wang, Haomin; Peng, Yi; Kou, Gang. A two-stage ranking method to minimize ordinal violation for pairwise comparisons. Applied Soft Computing. 2021-07-01, 106 [2022-10-31]. ISSN 1568-4946. doi:10.1016/j.asoc.2021.107287. (原始內容存檔於2022-10-31) (英語). 
  4. ^ 4.0 4.1 Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Yuan, Jingfeng. Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. Journal of Ambient Intelligence and Humanized Computing. 2021-10-01, 12 (10) [2022-10-31]. ISSN 1868-5145. doi:10.1007/s12652-020-02649-w. (原始內容存檔於2022-09-23) (英語). 
  5. ^ Palczewski, Krzysztof; Sałabun, Wojciech. Influence of various normalization methods in PROMETHEE II: an empirical study on the selection of the airport location. Procedia Computer Science. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019. 2019-01-01, 159 [2022-10-31]. ISSN 1877-0509. doi:10.1016/j.procs.2019.09.378. (原始內容存檔於2022-10-31) (英語). 
  6. ^ 6.0 6.1 Javed, Saad Ahmed; Gunasekaran, Angappa; Mahmoudi, Amin. DGRA: Multi-sourcing and supplier classification through Dynamic Grey Relational Analysis method. Computers & Industrial Engineering. 2022-11-01, 173 [2022-10-31]. ISSN 0360-8352. doi:10.1016/j.cie.2022.108674. (原始內容存檔於2022-10-29) (英語). 
  7. ^ 7.0 7.1 7.2 7.3 Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Zhang, Na. Sustainable Supplier Selection in Megaprojects: Grey Ordinal Priority Approach. Business Strategy and the Environment. 2021-01, 30 (1) [2022-10-31]. ISSN 0964-4733. doi:10.1002/bse.2623. (原始內容存檔於2022-09-26) (英語). 
  8. ^ 8.0 8.1 8.2 Mahmoudi, Amin; Javed, Saad Ahmed. Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach. Group Decision and Negotiation. 2022-10, 31 (5). ISSN 0926-2644. PMC 9409630可免費查閱. PMID 36042813. doi:10.1007/s10726-022-09790-1 (英語). 
  9. ^ 9.0 9.1 9.2 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. A novel project portfolio selection framework towards organizational resilience: Robust Ordinal Priority Approach. Expert Systems with Applications. 2022-02-01, 188. ISSN 0957-4174. doi:10.1016/j.eswa.2021.116067 (英語). 
  10. ^ Ordinal priority approach. Wikipedia. 2022-10-23 (英語). 
  11. ^ 11.0 11.1 Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective. Group Decision and Negotiation. 2022-04-01, 31 (2). ISSN 1572-9907. doi:10.1007/s10726-021-09770-x (英語). 
  12. ^ Shajedul, Islam. Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28 [2022-10-31]. doi:10.52812/ijgs.3. (原始內容存檔於2022-10-27) (美國英語). 
  13. ^ 13.0 13.1 Le, Minh-Tai; Nhieu, Nhat-Luong. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability. 2022-01, 14 (8) [2022-10-31]. ISSN 2071-1050. doi:10.3390/su14084732. (原始內容存檔於2022-10-31) (英語). 
  14. ^ Tafakkori, Keivan; Tavakkoli-Moghaddam, Reza; Siadat, Ali. Sustainable negotiation-based nesting and scheduling in additive manufacturing systems: A case study and multi-objective meta-heuristic algorithms. Engineering Applications of Artificial Intelligence. 2022-06-01, 112. ISSN 0952-1976. doi:10.1016/j.engappai.2022.104836 (英語). 
  15. ^ Evaluation of Automotive Parts Suppliers through Ordinal Priority Approach and TOPSIS | Management Science and Business Decisions. 2022-07-20 [2022-10-31]. doi:10.52812/msbd.37. (原始內容存檔於2022-07-21) (美國英語). 
  16. ^ Li, Jintao; Dai, Yan; Wang, Cynthia Changxin; Sun, Jun. Assessment of Environmental Demands of Age-Friendly Communities from Perspectives of Different Residential Groups: A Case of Wuhan, China. International Journal of Environmental Research and Public Health. 2022-07-26, 19 (15) [2022-10-31]. ISSN 1660-4601. PMC 9368052可免費查閱. PMID 35897508. doi:10.3390/ijerph19159120. (原始內容存檔於2022-08-02) (英語). 
  17. ^ Mahmoudi, Amin; Javed, Saad Ahmed. Performance Evaluation of Construction Sub‐contractors using Ordinal Priority Approach. Evaluation and Program Planning. 2022-04-01, 91. ISSN 0149-7189. doi:10.1016/j.evalprogplan.2021.102022 (英語). 
  18. ^ 18.0 18.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Adopting distributed ledger technology for the sustainable construction industry: evaluating the barriers using Ordinal Priority Approach. Environmental Science and Pollution Research. 2022-02-01, 29 (7). ISSN 1614-7499. PMC 8443118可免費查閱. PMID 34528198. doi:10.1007/s11356-021-16376-y (英語). 
  19. ^ 19.0 19.1 Sadeghi, Mahsa; Mahmoudi, Amin; Deng, Xiaopeng. Blockchain technology in construction organizations: risk assessment using trapezoidal fuzzy ordinal priority approach. Engineering, Construction and Architectural Management. 2022-01-01,. ahead-of-print (ahead-of-print). ISSN 0969-9988. doi:10.1108/ECAM-01-2022-0014. 
  20. ^ Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英語). 
  21. ^ 21.0 21.1 Mahmoudi, Amin; Sadeghi, Mahsa; Deng, Xiaopeng. Performance measurement of construction suppliers under localization, agility, and digitalization criteria: Fuzzy Ordinal Priority Approach. Environment, Development and Sustainability. 2022-04-12. ISSN 1573-2975. PMC 9001166可免費查閱. PMID 35431618. doi:10.1007/s10668-022-02301-x (英語). 
  22. ^ Faisal, Mohd. Nishat; Al Subaie, Abdulla Abdulaziz; Sabir, Lamay Bin; Sharif, Khurram Jahangir. PMBOK, IPMA and fuzzy-AHP based novel framework for leadership competencies development in megaprojects. Benchmarking: An International Journal. 2022-01-01,. ahead-of-print (ahead-of-print) [2022-10-31]. ISSN 1463-5771. doi:10.1108/BIJ-10-2021-0583. (原始內容存檔於2022-09-23). 
  23. ^ Elkadeem, Mohamed R.; Younes, Ali; Mazzeo, Domenico; Jurasz, Jakub; Elia Campana, Pietro; Sharshir, Swellam W.; Alaam, Mohamed A. Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment. Applied Energy. 2022-09-15, 322. ISSN 0306-2619. doi:10.1016/j.apenergy.2022.119532 (英語). 
  24. ^ Evaluation of Low-Carbon Sustainable Technologies in Agriculture Sector through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2021-07-28 [2022-10-31]. doi:10.52812/ijgs.3. (原始內容存檔於2022-10-27) (美國英語). 
  25. ^ Evaluation of Barriers to Electric Vehicle Adoption in Indonesia through Grey Ordinal Priority Approach | International Journal of Grey Systems. 2022-07-29 [2022-10-31]. doi:10.52812/ijgs.46. (原始內容存檔於2022-11-18) (美國英語). 
  26. ^ 26.0 26.1 Sadeghi, M.; Mahmoudi, A.; Deng, X.; Luo, X. Prioritizing requirements for implementing blockchain technology in construction supply chain based on circular economy: Fuzzy Ordinal Priority Approach. International Journal of Environmental Science and Technology. 2022-06-27. ISSN 1735-2630. doi:10.1007/s13762-022-04298-2 (英語). 
  27. ^ Sotoudeh-Anvari, Alireza. The applications of MCDM methods in COVID-19 pandemic: A state of the art review. Applied Soft Computing. 2022-09-01, 126 [2022-10-31]. ISSN 1568-4946. PMC 9245376可免費查閱. PMID 35795407. doi:10.1016/j.asoc.2022.109238. (原始內容存檔於2022-10-31) (英語). 
  28. ^ 28.0 28.1 28.2 Mahmoudi, Amin; Javed, Saad Ahmed; Mardani, Abbas. Gresilient supplier selection through Fuzzy Ordinal Priority Approach: decision-making in post-COVID era. Operations Management Research. 2022-06-01, 15 (1). ISSN 1936-9743. PMC 7960884可免費查閱. doi:10.1007/s12063-021-00178-z (英語). 
  29. ^ Evaluating Suppliers for Healthcare Centre using Ordinal Priority Approach | Management Science and Business Decisions. 2021-07-25 [2022-10-31]. doi:10.52812/msbd.12. (原始內容存檔於2021-08-04) (美國英語). 
  30. ^ Dorado Chaparro, Javier; Fernández-Bermejo Ruiz, Jesús; Santofimia Romero, María José; del Toro García, Xavier; Cantarero Navarro, Rubén; Bolaños Peño, Cristina; Llumiguano Solano, Henry; Villanueva Molina, Félix Jesús; Gonçalves Silva, Anabela; López, Juan Carlos. Phyx.io: Expert-Based Decision Making for the Selection of At-Home Rehabilitation Solutions for Active and Healthy Aging. International Journal of Environmental Research and Public Health. 2022-01, 19 (9) [2022-10-31]. ISSN 1660-4601. PMC 9103419可免費查閱. PMID 35564884. doi:10.3390/ijerph19095490. (原始內容存檔於2022-07-18) (英語). 
  31. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Koppen, Mario; Gupta, Brij B. Personal Mobility in Metaverse With Autonomous Vehicles Using Q-Rung Orthopair Fuzzy Sets Based OPA-RAFSI Model. IEEE Transactions on Intelligent Transportation Systems. 2022 [2022-10-31]. ISSN 1524-9050. doi:10.1109/TITS.2022.3186294. (原始內容存檔於2022-11-18). 
  32. ^ Pamucar, Dragan; Deveci, Muhammet; Gokasar, Ilgin; Tavana, Madjid; Köppen, Mario. A metaverse assessment model for sustainable transportation using ordinal priority approach and Aczel-Alsina norms. Technological Forecasting and Social Change. 2022-09-01, 182. ISSN 0040-1625. doi:10.1016/j.techfore.2022.121778 (英語). 
  33. ^ Deveci, Muhammet; Pamucar, Dragan; Gokasar, Ilgin; Pedrycz, Witold; Wen, Xin. Autonomous Bus Operation Alternatives in Urban Areas Using Fuzzy Dombi-Bonferroni Operator Based Decision Making Model. IEEE Transactions on Intelligent Transportation Systems. 2022 [2022-10-31]. ISSN 1524-9050. doi:10.1109/TITS.2022.3202111. (原始內容存檔於2022-09-23). 
  34. ^ Su, Chong; Ma, Xuri; Lv, Jing; Tu, Tao; Li, Hongguang. A multilayer affective computing model with evolutionary strategies reflecting decision-makers’ preferences in process control. ISA Transactions. 2022-09-01, 128. ISSN 0019-0578. doi:10.1016/j.isatra.2021.11.038 (英語). 
  35. ^ Amirghodsi, Sirous; Naeini, Ali Bonyadi; Makui, Ahmad. An Integrated Delphi-DEMATEL-ELECTRE Method on Gray Numbers to Rank Technology Providers. IEEE Transactions on Engineering Management. 2022-08, 69 (4) [2022-10-31]. ISSN 0018-9391. doi:10.1109/TEM.2020.2980127. (原始內容存檔於2022-10-31). 
  36. ^ Bouraima, Mouhamed Bayane; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka; Qiu, Yanjun; Tanackov, Ilija. Prioritization Road Safety Strategies Towards Zero Road Traffic Injury Using Ordinal Priority Approach. Operational Research in Engineering Sciences: Theory and Applications. 2022-08-19, 5 (2) [2022-10-31]. ISSN 2620-1747. doi:10.31181/oresta190822150b. (原始內容存檔於2022-08-21) (英語). 
  37. ^ Bouraima, Mouhamed Bayane; Qiu, Yanjun; Kiptum, Clement Kiprotich; Ndiema, Kevin Maraka. Evaluation of Factors Affecting Road Maintenance in Kenyan Counties Using the Ordinal Priority Approach. Journal of Computational and Cognitive Engineering. 2022-08-17 [2022-10-31]. ISSN 2810-9503. doi:10.47852/bonviewJCCE2202272. (原始內容存檔於2022-09-23) (英語). 
  38. ^ Irvanizam, Irvanizam; Zulfan, Zulfan; Nasir, Puti F.; Marzuki, Marzuki; Rusdiana, Siti; Salwa, Nany. An Extended MULTIMOORA Based on Trapezoidal Fuzzy Neutrosophic Sets and Objective Weighting Method in Group Decision-Making. IEEE Access. 2022, 10 [2022-10-31]. ISSN 2169-3536. doi:10.1109/ACCESS.2022.3170565. (原始內容存檔於2022-11-18). 
  39. ^ Mahmoudi, Amin; Abbasi, Mehdi; Yuan, Jingfeng; Li, Lingzhi. Large-scale group decision-making (LSGDM) for performance measurement of healthcare construction projects: Ordinal Priority Approach. Applied Intelligence. 2022-09-01, 52 (12). ISSN 1573-7497. PMC 9449288可免費查閱. PMID 36091930. doi:10.1007/s10489-022-04094-y (英語). 
  40. ^ Web-based solver. ordinalpriorityapproach.com. [2022-10-31]. (原始內容存檔於2022-10-19). 
  41. ^ Excel-based solver, Zenodo, 2021-01-21 [2022-10-31], (原始內容存檔於2022-10-16) 
  42. ^ Lingo-based solver, 2022-07-07 [2022-10-31], (原始內容存檔於2022-10-21) 
  43. ^ Matlab-based solver. www.mathworks.com. [2022-10-31]. (原始內容存檔於2022-10-17) (英語).