彗星塵:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
→‎大小:​ 內容擴充
→‎成分:​ 內容擴充
第13行: 第13行:


== 成分 ==
== 成分 ==
粉塵的成分通常為[[球粒隕石]]。其單體含有鎂鐵質矽酸鹽,如[[橄欖石]]和[[輝石]]<ref>{{cite journal |last1=Bradley |first1=J |last2=Brownlee |first2=D |last3=Veblen |first3=D |s2cid=4303275 |date=1983 |title=Pyroxene whiskers and platelets in interplanetary dust: evidence of vapor phase growth |journal=Nature |volume=301 |issue=5900 |page=473|doi=10.1038/301473a0 |bibcode=1983Natur.301..473B }}</ref>。矽酸鹽富含高冷凝溫度的{{link-en|鎂橄欖石|Forsterite}}和[[頑火輝石]]<ref name="brotsoual06">{{cite journal |last1=Brownlee |first1=D |last2=Tsou |first2=P |last3=Aléon |first3=J |s2cid=141128 |display-authors=etal |date=2006 |title=81P/Wild 2 Under a Microscope |journal=Science |volume=314 |issue=5806 |pages=1711–6 |doi=10.1126/science.1135840 |pmid=17170289 |url=https://digital.library.unt.edu/ark:/67531/metadc882789/ |hdl=1885/33730 |hdl-access=free }}</ref>。當這些顆粒迅速凝結時,它們往往會形成非常小的顆粒,而不是合併成液滴。

與球粒隕石一樣,顆粒含有[[隕鐵| Fe(Ni)]]硫化物<ref name="zolze06">{{cite journal |last1=Zolensky |first1=M |last2=Zega |first2=T |last3=Yano |first3=H |last4=Wirick |first4=S |last5=Westphal |first5=A |last6=Weisberg |first6=M |display-authors=etal |s2cid=25539280 |date=15 Dec 2006 |title=Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples |journal=Science |volume=314 |issue=5806 |pages=1735–9 |doi=10.1126/science.1135842 |pmid=17170295 |bibcode=2006Sci...314.1735Z |hdl=1885/37338 |hdl-access=free }}</ref><ref>{{cite journal |last1=Zolensky |first1=M |last2=Thomas |first2=K |date=Nov 1995 |title=Iron and iron-nickel sulfides in chondritic interplanetary dust particles |journal=Geochimica et Cosmochimica Acta |volume=59 | issue=22 |page=4707|doi=10.1016/0016-7037(95)00329-0 |bibcode=1995GeCoA..59.4707Z }}</ref>和嵌入金屬和硫化物的玻璃(glass with embedded metal and sulfides,GEMS)<ref name="zolze06"/>。
存在不同數量的有機物([[CHNOPS|CHON]])<ref>{{cite journal |last1=Kissel |first1=J |last2=Sagdeev |first2=R |last3=Bertaux |first3=J |s2cid=122405233 |display-authors=etal |date=1986 |title=Composition of comet Halley dust particles from Vega observations |journal=Nature |volume=321 |page=280 |doi=10.1038/321280a0 |bibcode=1986Natur.321..280K }}
</ref><ref>{{cite journal |last1=Kissel |first1=J |last2=Brownlee |first2=D |last3=Büchler |first3=K |s2cid=186245081 |display-authors=etal |date=1986 |title= Composition of comet Halley dust particles from Giotto observations|journal=Nature |volume=321 |page=336|doi=10.1038/321336a0 |bibcode=1986Natur.321..336K }}</ref><ref>{{cite journal |last1=Kissel |first1=J |last2=Kruger |first2=F |s2cid=4358568 |date=1987 |title= The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1|journal=Nature |volume=326 |issue=6115 |pages=755–60|doi=10.1038/326755a0 |bibcode=1987Natur.326..755K }}</ref>。雖然有機物在宇宙中非常豐富,並且被廣泛預測存在於彗星中,但在大多數望遠鏡中,它們的光譜都是模糊的。僅在[[哈雷艦隊|哈雷飛越]]期間通過[[質譜法]]確認有機物的存在<ref>{{cite journal |last1=Lawler |first1=M |last2=Brownlee |first2=D |s2cid=4314100 |date=1992 |title=CHON as a component of dust from comet Halley |journal=Nature |volume=359 |issue=6398 |pages=810–12|doi=10.1038/359810a0 |bibcode=1992Natur.359..810L }}</ref><ref name="levasseuragarwal18">{{cite journal |last1=Levasseur-Regourd |first1=A |last2=Agarwal |first2=A |last3=Cottin |first3=H |last4=Engrand |first4=C |last5=Flynn |first5=G |last6=Fulle |first6=M |last7=Gombosi |first7=T |s2cid=189791473 |display-authors=etal |date=2018 |title=Cometary Dust |journal=Space Science Reviews |volume=214 |issue=3 |page=number 64|doi=10.1007/s11214-018-0496-3 |bibcode=2018SSRv..214...64L }}</ref>。一些有機物多以[[多環芳香烴]](PAHs)的形式存在<ref>{{cite journal |last1=Clemett |first1=S |last2=Maechling |first2=C |last3=Zare |first3=R |last4=Swan |first4=P |last5=Walker |first5=R |s2cid=24398934 |date=1993 |title= Identification of complex aromatic molecules in individual interplanetary dust particles|journal=Science |volume=262 |issue=5134 |pages=721–5 |doi=10.1126/science.262.5134.721 |pmid=17812337 |bibcode=1993Sci...262..721C }}</ref><ref name="greenbergli"/><ref>{{cite journal |last1=Lisse |first1=C |display-authors=etal |s2cid=3024593 |date=2006 |title= Spitzer spectral observations of the deep impact ejecta|journal=Science |volume=313 |issue=5787 |pages=635–40 |doi=10.1126/science.1124694 |pmid=16840662 |bibcode=2006Sci...313..635L |url=https://authors.library.caltech.edu/51944/7/Lisse.SOM.pdf }}</ref><ref>{{cite journal |last1=Sandford |first1=S |display-authors=etal |s2cid=2727481 |date=2006 |title= Organics captured from comet 81P/Wild 2 by the Stardust spacecraft|journal=Science |volume=314 |issue=5806 |pages=1720–4 |doi=10.1126/science.1135841 |pmid=17170291 |bibcode=2006Sci...314.1720S }}</ref><ref name="kellerba06">{{cite journal |last1=Keller |first1=L |last2=Bajt |first2=S |last3=Baratta |first3=G |last4=Borg |first4=J |last5=Bradley |first5=J |last6=Brownlee |first6=D |s2cid=35413527 |display-authors=etal |date=15 Dec 2006 |title=IR Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust |journal=Science |volume=314 |issue=5806 |pages=1728–31 |doi=10.1126/science.1135796 |pmid=17170293 }}</ref>。

可能會發現非常小的[[太陽前顆粒]](presolar grains,PSG)夾雜物<ref name="brotsoual06"/><ref name="kellerba06"/>。


== 塵埃和彗星的起源 ==
== 塵埃和彗星的起源 ==

2022年6月5日 (日) 17:45的版本

彗星塵是指起源於彗星宇宙塵埃,它可以提供彗星起源的線索。當地球通過彗星塵埃軌跡時,它會產生流星雨

物理性質

大小

彗星活動產生的塵埃大部分為次微米級[1]至微米的大小[2][3]。然而,這一部分是短暫的,會因為輻射壓導致它們被吹出太陽系[4][5],或因為坡印廷–羅伯遜效應而螺旋向內[6][7]

下一個尺寸等級是"蓬鬆的"("fluffly")[4][5]或"羣集類型"("cluster-type")[8],是前述顆粒的聚合物。它們的大小通常為20-100微米,但可以觀察到尺寸不是任意的[9],這是由於多孔的聚合物容易斷裂 [10] or compact.[8][11][12]

更大的粒子是微流星體[13][14],不再是塵埃了[15][16]。在國際天文學聯合會(IAU)沒有定義的情况下[17][18],各小組設計了自己的粉塵定義:小於100微米[19]、50[20]、40[21] 30,[22]、和20微米[23] 還有<10微米[24][25][26][16]。其中一些塵埃/微流星體的定義是近似的或模棱兩可的[27][28][29],有些還重疊或自相矛盾(衝突)[30][23][22]

IAU於2017年發佈了一份正式聲明。流星體為30微米至1米,塵埃較小,且不鼓勵使用"微流星體"一詞(儘管不是微流星體)[31]國際流星組織 (IMO)雖然注意到了新的定義[32],但仍在其網站上顯示先前的定義[33],即0.001cm[34]美國流星學會英语American Meteor Society(AMS)也沒有給出嚴格的定義[35][36]

成分

粉塵的成分通常為球粒隕石。其單體含有鎂鐵質矽酸鹽,如橄欖石輝石[37]。矽酸鹽富含高冷凝溫度的鎂橄欖石頑火輝石[27]。當這些顆粒迅速凝結時,它們往往會形成非常小的顆粒,而不是合併成液滴。

與球粒隕石一樣,顆粒含有 Fe(Ni)硫化物[38][39]和嵌入金屬和硫化物的玻璃(glass with embedded metal and sulfides,GEMS)[38]

存在不同數量的有機物(CHON[40][41][42]。雖然有機物在宇宙中非常豐富,並且被廣泛預測存在於彗星中,但在大多數望遠鏡中,它們的光譜都是模糊的。僅在哈雷飛越期間通過質譜法確認有機物的存在[43][44]。一些有機物多以多環芳香烴(PAHs)的形式存在[45][19][46][47][48]

可能會發現非常小的太陽前顆粒(presolar grains,PSG)夾雜物[27][48]

塵埃和彗星的起源

顯微鏡下看見的彗星塵埃顆粒。

彗星起源的模型有:[49]

  1. 星際模型,
  2. 太陽系模型,
  3. 原始碎石堆,
  4. 聚集在天王星海王星區域圍繞著的星子塵埃盤面,
  5. 原恆星風掃掠出的低溫外殼物質。

彗星的體積大小的特性,像是密度以及化學成分,可以區分模型之間的不同。例如,彗星和星際塵埃的同位素比率非常接近,顯示兩著有著一個共同的起源。

在1),星際塵埃模型說在濃厚雲氣的塵埃粒子上早於太陽形成。冰和塵埃混合,然後聚合成彗星,化學性質沒有明顯的改變。J. Mayo Greenberg在1986年率先提出這種想法。

在2) 太陽系模型,在星際雲中形成的冰首先揮發成為圍繞著原始太陽的塵埃和氣體吸積盤中的一部分。揮發的冰稍後在凝結成固體,並成為彗星的一部分。 The vaporized ices later resolidified and assembled into comets. 所以彗星在這個模型中會與由星際冰直接形成的彗星有著不同的組成。.

在3) 原始碎石堆模型說彗星是在木星形成的區域內凝聚成形。

星塵號發現在威爾德二號彗星的彗星塵內有矽酸鹽的結晶,這意味著塵埃形成的溫度超過[玻璃熔點]] (>1,000K),是在環繞著年輕恆星盤面的內側高溫地區,然後混合著太陽星雲從恆星內側向外輻射很遠的距離,或是塵埃粒子凝結在發展中紅巨星或超巨星向外流動。威爾德二號彗星的塵埃與新形成恆星吸積盤外側發現的顆粒相似[50]

彗星和它的塵埃讓我們可以研究太陽系主要行星軌道以外的區域。彗星的區別在於它們的軌道,長週期彗星的軌道週期超過200年,有著很長的橢圓軌道,與太陽系平面的傾斜是隨機的。短週期彗星與太陽系平面的傾斜通常都小於30度,環繞太陽公轉的方向如同行星一樣,都是逆時針的,並且週期少於200年。

一顆彗星遍歷它的軌道時將體驗一系列不同的條件。對長週期彗星,大部分的時間都在遠離太陽的場所,因為溫度太低而不會發生冰蒸發的情況。當它經過類地行星的區域,蒸發將快速到足以將小顆粒帶走,但較大的顆粒仍會受到抑制而留在彗核,並開始形成塵埃層。越靠近太陽,熱和蒸發的速率越高,因此將沒有塵埃柯粒可以留存。所以,覆蓋著彗核的塵埃層厚度可以顯示彗星會接近太陽到多近,以及經過近日點次數的多寡。如果一顆彗星有著厚厚的塵埃層,它可能已經頻繁的經過近日點,但並沒有過度的接近太陽。

塵埃層累積的厚度,可能可以對所有的短周期彗星做最佳的描述,短週期彗星彗核表面上塵埃層的厚度被認為可以達到公尺的等級。積累的塵埃層隨著時間的推移會改變短週期彗星的物理性質。塵埃層不僅會抑制太陽對彗星冰的加熱 (塵埃對太陽光中的熱是固若金湯的不良導體),也會使彗核內氣體流失的速率減緩。A典型的短週期彗星彗核在軌道上會快速的減緩它的蒸發速率,到達某一個點時會無法檢測到彗髮和彗尾的活動,天文學家就會將它們看成是低反照率近地小行星

參考資料

  1. ^ Mukai, T.; Mukai, S.; Kikouchi, S. Variation of Grain Properties and the Dust Outbursts. Symposium on the Diversity and Similarity of Comets, ESA SP-278. European Space Agency. 1987: 427–30. 
  2. ^ Grun, E.; Massonne; Schwehm, G. New Properties of Cometary Dust. Symposium on the Diversity and Similarity of Comets, ESA SP-278. European Space Agency. 1987: 305–14. 
  3. ^ Fernandez, J. Comets: Nature, Dynamics, Origins, and their Cosmogonical Relevance. Springer. 2005: 66. 
  4. ^ 4.0 4.1 Southworth, R. Distribution of the Zodiacal Particles. Annals of the New York Academy of Sciences. 11 Nov 1964, 119: 54. S2CID 85917931. doi:10.1111/j.1749-6632.1965.tb47423.x. 
  5. ^ 5.0 5.1 Fechtig, H. Cometary Dust In The Solar System. Comets. Tucson: University of Arizona Press. 1982: 370. 
  6. ^ Whipple, Fred. The Mystery of Comets. Cambridge University Press. 1986: 143. ISBN 9780521324403. 
  7. ^ Dermott, S. Ch. Orbital evolution of interplanetary dust. Grün E; Gustafson B; Dermott S; Fechtig H (编). Interplanetary Dust. SpringerVerlag. 2001: 569–39. 
  8. ^ 8.0 8.1 Zolensky, M.; Lindstrom, D. Mineralogy of 12 large 'chondritic' interplanetary dust particles. 1991 LPSC: 161–69. Mar 1991. 
  9. ^ Ney, E. Optical and Infrared Observations of Bright Comets in the Range 0.5 um to 20 um. Comets. Tucson: University of Arizona Press. 1982: 323. 
  10. ^ Simpson, J.; Rabinowitz, D.; Tuzzolino, A.; Ksanfomality, L. Halley's comet dust particle mass spectra, flux distributions and jet structures derived from measurements on the Vega-1 and Vega-2 spacecraft. ESA Proceedings of the 20th ESLAB Symposium on the Exploration of Halley's Comet. Volume 2: Dust and Nucleus. European Space Agency. 1986: 11–16. 
  11. ^ Leinert, C; Roser, S; Buitrago, J. How to maintain the spatial distribution of interplanetary dust. Astronomy & Astrophysics. 1983, 118 (2): 345–57. Bibcode:1983A&A...118..345L. 
  12. ^ Mukai, T; fechtig, H. Packing efficient of fluffy particles. Planetary and Space Science. June 1983, 31 (6): 655–58. doi:10.1016/0032-0633(83)90006-5. 
  13. ^ Reach, W.; Sykes, M.; Kelley, M. Large Particles From Short-Period Comets. Workshop on Cometary Dust in Astrophysics. Houston: Lunar and Planetary Institute. 2003. 
  14. ^ Kelley, M.; Reach, W.; Woodward, C. A Search for Deep Impact’s Large Particle Ejecta. Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength. Berlin Heidelberg: Springer-Verlag. 2009: 125. ISBN 978-3-540-76959-0. 
  15. ^ Beech, M; Steel, D. On the definition of the term 'meteoroid'. Q. J. R. Astron. Soc. 1995, 36: 281–84. Bibcode:1995QJRAS..36..281B.  Sec. 4 Lower size limit: Meteoroid or dust?
  16. ^ 16.0 16.1 Rubin, A; Grossman, J. Meteorite and meteoroid: New comprehensive definitions. Meteoritics & Planetary Science. Mar 2010, 45 (1): 114–22. Bibcode:2010M&PS...45..114R. doi:10.1111/j.1945-5100.2009.01009.x.  "...in practice the term is most often applied to objects smaller than approximately 100 um. These size ranges need to be modified." "By this definition, IDPs are particles smaller than 10um.""
  17. ^ Millman, P. A Report on Meteor Terminology. J. R. Astron. Soc. Canada. 1961, 55 (6): 265.  "particle sizes in general smaller than micrometeorites"
  18. ^ Resolutions Adopted A. By The General Assembly (PDF). [30 Jun 2020].  Sec. "Commission 22 (Meteors and Meteorites/Météores et des Meteorites)"
  19. ^ 19.0 19.1 Greenberg, M; Li, A. Morphological structural and chemical composition of cometary nuclei and dust. Space Science Reviews. 1997, 90: 149–61. S2CID 189789755. doi:10.1023/A:1005298014670.  "tenth micron particles" "very fluffy aggregates"
  20. ^ Klöck, W; Staderman, F. Mineralogical and chemical relationships of interplanetary dust particles, micrometeorites, and meteorites in. LPI Technical Report 94-02 Workshop on the analysis of interplanetary dust particles. 1994.  "50 um"
  21. ^ Levasseur-regourd, A; mukai; lasue; okada. physical properties of comet and interplanetary dust. Planetary and Space Science. 2007, 55 (9): 1010–20. Bibcode:2007P&SS...55.1010L. doi:10.1016/j.pss.2006.11.014.  "a radius of 20 um for the upper cut-off"
  22. ^ 22.0 22.1 Grun, E; Krüger, H; Srama, R. The Dawn of Dust Astronomy. Space Science Reviews. 2019, 215 (7): number 46. Bibcode:2019SSRv..215...46G. S2CID 208527737. arXiv:1912.00707可免费查阅. doi:10.1007/s11214-019-0610-1.  S.3 Multifaceted Scientific Dust Observations "<~ 30 micrometer"
  23. ^ 23.0 23.1 Levasseur-Regourd, A; Mukai, T; Lasue, J; Okada, Y. Physical properties of comet and interplanetary dust. Planetary and Space Science. Jun 2007, 55 (9): 1010–20. Bibcode:2007P&SS...55.1010L. doi:10.1016/j.pss.2006.11.014.  "20 um for the upper cut-off" "50 um for the upper cut-off"
  24. ^ Bradley, J; Sandford, S; Walker, R. 11.1 Interplanetary Dust Particles. Meteorites and the Early Solar System. University of Arizona Press. 1988: 861.  "~ 10 um i diamtr" "~ 10-3 cm in dia"
  25. ^ Love, S; Brownlee, D. Heating and thermal transformation of micrometeoroids entering the Earth's atmosphere. Icarus. Jan 1991, 89 (1): 26–43. Bibcode:1991Icar...89...26L. doi:10.1016/0019-1035(91)90085-8.  "10 um"
  26. ^ Coulson, D; Wickramasinghe, N. Frictional and radiation heating of micron-sized meteoroids in the Earth's upper atmosphere. Mon. Not. R. Astron. Soc. 21 Aug 2003, 343 (4): 1123–30. Bibcode:2003MNRAS.343.1123C. doi:10.1046/j.1365-8711.2003.06478.x可免费查阅.  "~10 um"
  27. ^ 27.0 27.1 27.2 Brownlee, D; Tsou, P; Aléon, J; et al. 81P/Wild 2 Under a Microscope. Science. 2006, 314 (5806): 1711–6. PMID 17170289. S2CID 141128. doi:10.1126/science.1135840. hdl:1885/33730可免费查阅. 
  28. ^ Rehder, D. 5.3.3 Intrplntr Ds Ptcls (Prsl Grs). Chemistry in Space. Wiley-VCH. 2010. ISBN 978-3-527-32689-1.  "<100um; typically 0.1-20um"
  29. ^ Folco, L; Cordier, C. 9. Micrometeorites. EMU Notes in Mineralogy. 2015.  "10 um (Rubin and Grossman, 2010)""in the <100 um size fraction, i.e. across the transition between micrometeorites and IDPs"
  30. ^ Rietmeijer, F. Mesospheric Metal abundances and Meteoric Dust: Analysis of surviving Meteoroids. 34th COSPAR Scientific Assembly/2nd World Space Congress (196). Oct 2002.  "stratospheric interplanetary dust particles (IDPs) (2-100 microns)" "debris from progenitors ~30 to ~1,000 microns"
  31. ^ Definitions of terms in meteor astronomy (PDF). 
  32. ^ Perlerin, V. Definitions of terms in meteor astronomy (IAU). [30 Jun 2020]. 
  33. ^ Glossary. [30 Jun 2020]. 
  34. ^ Benoit, P. Dust. [30 Jun 2020].  "0.001 cm in diameter"
  35. ^ METEOR FAQS. [30 Jun 2020]. 
  36. ^ Glossary. [30 Jun 2020]. 
  37. ^ Bradley, J; Brownlee, D; Veblen, D. Pyroxene whiskers and platelets in interplanetary dust: evidence of vapor phase growth. Nature. 1983, 301 (5900): 473. Bibcode:1983Natur.301..473B. S2CID 4303275. doi:10.1038/301473a0. 
  38. ^ 38.0 38.1 Zolensky, M; Zega, T; Yano, H; Wirick, S; Westphal, A; Weisberg, M; et al. Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples. Science. 15 Dec 2006, 314 (5806): 1735–9. Bibcode:2006Sci...314.1735Z. PMID 17170295. S2CID 25539280. doi:10.1126/science.1135842. hdl:1885/37338可免费查阅. 
  39. ^ Zolensky, M; Thomas, K. Iron and iron-nickel sulfides in chondritic interplanetary dust particles. Geochimica et Cosmochimica Acta. Nov 1995, 59 (22): 4707. Bibcode:1995GeCoA..59.4707Z. doi:10.1016/0016-7037(95)00329-0. 
  40. ^ Kissel, J; Sagdeev, R; Bertaux, J; et al. Composition of comet Halley dust particles from Vega observations. Nature. 1986, 321: 280. Bibcode:1986Natur.321..280K. S2CID 122405233. doi:10.1038/321280a0. 
  41. ^ Kissel, J; Brownlee, D; Büchler, K; et al. Composition of comet Halley dust particles from Giotto observations. Nature. 1986, 321: 336. Bibcode:1986Natur.321..336K. S2CID 186245081. doi:10.1038/321336a0. 
  42. ^ Kissel, J; Kruger, F. The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature. 1987, 326 (6115): 755–60. Bibcode:1987Natur.326..755K. S2CID 4358568. doi:10.1038/326755a0. 
  43. ^ Lawler, M; Brownlee, D. CHON as a component of dust from comet Halley. Nature. 1992, 359 (6398): 810–12. Bibcode:1992Natur.359..810L. S2CID 4314100. doi:10.1038/359810a0. 
  44. ^ Levasseur-Regourd, A; Agarwal, A; Cottin, H; Engrand, C; Flynn, G; Fulle, M; Gombosi, T; et al. Cometary Dust. Space Science Reviews. 2018, 214 (3): number 64. Bibcode:2018SSRv..214...64L. S2CID 189791473. doi:10.1007/s11214-018-0496-3. 
  45. ^ Clemett, S; Maechling, C; Zare, R; Swan, P; Walker, R. Identification of complex aromatic molecules in individual interplanetary dust particles. Science. 1993, 262 (5134): 721–5. Bibcode:1993Sci...262..721C. PMID 17812337. S2CID 24398934. doi:10.1126/science.262.5134.721. 
  46. ^ Lisse, C; et al. Spitzer spectral observations of the deep impact ejecta (PDF). Science. 2006, 313 (5787): 635–40. Bibcode:2006Sci...313..635L. PMID 16840662. S2CID 3024593. doi:10.1126/science.1124694. 
  47. ^ Sandford, S; et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science. 2006, 314 (5806): 1720–4. Bibcode:2006Sci...314.1720S. PMID 17170291. S2CID 2727481. doi:10.1126/science.1135841. 
  48. ^ 48.0 48.1 Keller, L; Bajt, S; Baratta, G; Borg, J; Bradley, J; Brownlee, D; et al. IR Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust. Science. 15 Dec 2006, 314 (5806): 1728–31. PMID 17170293. S2CID 35413527. doi:10.1126/science.1135796. 
  49. ^ Science News 149, June 1, 1996, pp. 346–347.
  50. ^ ([//web.archive.org/web/20171124175241/http://arxiv.org/abs/astro-ph/0603554 页面存档备份,存于互联网档案馆) [astro-ph/0603554] The Circumstellar Environments of Young Stars at AU Scales]