本页使用了标题或全文手工转换

向量自回归模型

维基百科,自由的百科全书
跳转至: 导航搜索

向量自迴歸模型英语:Vector Autoregression model,简称VAR模型)是一种常用的计量经济模型,由计量经济学家和宏观经济学克里斯托弗·西姆斯英语:Christopher Sims)提出。它擴充了只能使用一個變量的自迴歸模型(簡稱:AR模型),使容納大於1個變量,因此經常用在多變量時間序列模型的分析上。

定义[编辑]

VAR模型描述在同一样本期间内的n变量(内生变量)可以作为它们过去值的线性函数。

一个VAR(p)模型可以写成为:

其中:cn × 1常数向量Ain × n矩阵。etn × 1误差向量,满足:

  1. —误差项的均值为0
  2. —误差项的协方差矩阵为Ω(一个n × 'n正定矩阵)
  3. (对于所有不为0的k都满足)—误差项不存在自相关

例子[编辑]

一个有两个变量的VAR(1)模型可以表示为:

或者也可以写为以下的方程组:

转换VAR(p)为VAR(1)[编辑]

VAR(p)模型常常可以被改写为VAR(1)模型。 比如VAR(2)模型:

可以转换成一个VAR(1)模型:

其中I单位矩阵

结构与简化形式[编辑]

结构向量自迴归[编辑]

一个结构向量自迴归(Structural VAR)模型可以写成为:

其中:c0n × 1常数向量Bin × n矩阵,εtn × 1误差向量。

一个有两个变量的结构VAR(1)可以表示为:

其中:

简化向量自迴歸[编辑]

把结构向量自迴歸与B0逆矩阵相乘:

让:

对于

我们得到p-阶简化向量自迴歸(Reduced VAR):

相關條目[编辑]