太阳系最高山峰列表

维基百科,自由的百科全书
跳转至: 导航搜索

以下为太阳系各星球上已知的最高山峰列表,羅列星球上的各類型之最高峰。位於火星上高达21.9千米的盾状火山奥林帕斯山是太阳系所有行星中的最高山峰。在1971年它被发现之后的40年中,奥林帕斯山一直是太阳系中已知的最高峰。然而在2011年发现小行星灶神星雷亚希尔维亚盆地中央峰英语Complex crater具有相仿的高度。[a]

太阳系最高峰,火星上的奥林帕斯山与地球上的珠穆朗玛峰冒纳凯阿火山的对比。

列表[编辑]

以下高度为从底部到顶部的距离,因为在其他星球没有与地球对等的海平面可供测量。

星球 最高峰 高度 发源 注释
水星 卡洛里山脉 超过3 km[1][2] 撞击坑[3] 卡洛里撞击形成
金星 馬克士威山脈 约6.4 km(4.0 mi) [4] 构造山[5] 具有被称为「金星之雪」的明亮雷达影像区域,可能是因为黄铁矿等矿物存在造成的[6]
马特山 约4.9 km(3.0 mi)[7] 火山[8] 金星上最高的火山
地球 冒纳凯阿火山冒纳罗亚火山 10.2 km(6.3 mi)[9] 火山 露出海平面仅有4.2 km(2.6 mi)
丹奈利峰 5.3至5.9 km(3.3至3.7 mi)[10] 构造山 地球上底部到顶部最高的山[11][b]
聖母峰 3.6至4.6 km(2.2至2.9 mi)[12] 构造山 北坡高4.6 km,南坡高3.6 km[c]
月球 惠更斯山 5.5 km(3.4 mi)[13][14] 撞击坑 雨海撞击形成
哈德利山 4.5 km(2.8 mi)[13][14] 撞击坑 由雨海撞击形成
吕姆克山 1.1 km(0.68 mi)[15] 火山 月球上最大的火山结构[15]
火星 奥林帕斯山 21.9 km(14 mi)[16][17] 火山 Rises 26 km above northern plains,[18] 1000 km away.
艾斯克雷尔斯山 14.9 km(9.3 mi)[16] 火山 塔尔西斯山群英语Tharsis Montes三座山之中最高者
埃律西昂山 12.6 km(7.8 mi)[16] 火山 埃律西昂平原最高的火山
阿尔西亚山 11.7 km(7.3 mi)[16] 火山 Summit caldera is 108至138 km(67至86 mi) across[16]
帕弗尼斯山 8.4 km(5.2 mi)[16] 火山 Summit caldera is 4.8 km(3.0 mi) deep[16]
安瑟里斯山英语Anseris Mons 6.2 km(3.9 mi)[19] 撞击坑 火星上最高的非火山,由希腊撞击形成
夏普山 4.5至5.5 km(2.8至3.4 mi)[20][d] 侵蚀作用[22] Formed from deposits in Gale crater; to be ascended by the MSL rover[23]
灶神星 雷亚希尔维亚中央峰 22 km(14 mi)[24][25] 撞击坑 参见太阳系最大撞击坑列表
木卫一 Boösaule Montes "South"[26] 17.5至18.2 km(10.9至11.3 mi)[27] 构造山 Has a 15 km(9 mi) high scarp on its SE margin[28]
爱奥尼亚山东脊 约12.7 km(7.9 mi)[28][29] 构造山 Has the form of a curved double ridge
优卑亚山 10.3至13.4 km(6.4至8.3 mi)[30] 构造山 A NW flank landslide left a 25,000 km3 debris apron[31][e]
未命名(245° W, 30° S) 约2.5 km(1.6 mi)[32][33] 火山 木卫一的最高火山之一,拥有非典型的圆锥形。[33][f]
土卫一 赫歇尔撞击坑中央峰 约7 km(4 mi)[35] 撞击坑 参见太阳系最大撞击坑列表
土衛六 米斯林山脉 2.0 km(1.2 mi)[36] 构造山 (?) May have formed due to global contraction[36]
末日山 1.45 km(0.90 mi)[37] 冰火山 (?) 索特拉光斑相邻
土卫八 赤道脊 约20 km(12 mi)[38] 不明[g] 各別的山峰高度仍待測量
天卫四 未命名("limb mountain") 约11 km(7 mi)[35] 撞击坑 (?) 旅行者2号飞掠,简单地测定为6公里[42]

相册[编辑]

以下图片以高度降序排列:

参见[编辑]

注释[编辑]

  1. ^ Olympus Mons, however, is a much broader peak; its diameter exceeds that of Vesta itself.
  2. ^ On p. 20 of Helman (2005): "the base to peak rise of Mount McKinley is the largest of any mountain that lies entirely above sea level, some 18000 feet"
  3. ^ Peak is 8.8 km(5.5 mi) above sea level, and over 13 km(8.1 mi) above the oceanic abyssal plain.
  4. ^ About 5.25 km high from the perspective of the landing site of Curiosity.[21]
  5. ^ Among the Solar System's largest[31]
  6. ^ Some of Io's paterae are surrounded by radial patterns of lava flows, indicating they are on a topographic high point, making them shield volcanoes. Most of these volcanoes exhibit relief of less than 1 km. A few have more relief; Ruwa Patera rises 2.5 to 3 km over its 300 km width. However, its slopes are only on the order of a degree.[34] A handful of Io's smaller shield volcanoes have steeper, conical profiles; the example listed is 60 km across and has slopes averaging 4° and reaching 6-7° approaching the small summit depression.[34]
  7. ^ Hypotheses of origin include crustal readjustment associated with a decrease in oblateness due to tidal locking,[39][40] and deposition of deorbiting material from a former ring around the moon.[41]
  8. ^ A linearized wide-angle hazcam image that makes the mountain look steeper than it actually is.

参考资料[编辑]

  1. ^ Surface. MESSENGER web site. Johns Hopkins University/Applied Physics Lab. [2012-04-04]. 
  2. ^ Oberst, J.; Preusker, F.; Phillips, R. J.; Watters, T. R.; Head, J. W.; Zuber, M. T.; Solomon, S. C. The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus. 2010, 209 (1): 230–238. doi:10.1016/j.icarus.2010.03.009. ISSN 0019-1035. 
  3. ^ Fassett, C. I.; Head, J. W.; Blewett, D. T.; Chapman, C. R.; Dickson, J. L.; Murchie, S. L.; Solomon, S. C.; Watters, T. R. Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth and Planetary Science Letters. 2009, 285 (3-4): 297–308. doi:10.1016/j.epsl.2009.05.022. ISSN 0012-821X. 
  4. ^ Jones, Tom; Stofan, Ellen. Planetology : Unlocking the secrets of the solar system. Washington, D.C.: National Geographic Society. 2008: 74. ISBN 978-1-4262-0121-9. 
  5. ^ Keep, M.; Hansen, V. L. Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation. Journal of Geophysical Research. 1994, 99 (E12): 26015. doi:10.1029/94JE02636. ISSN 0148-0227. 
  6. ^ Otten, Carolyn Jones. 'Heavy metal' snow on Venus is lead sulfide. Newsroom (Washington University in Saint Louis). 2004-02-10 [2012-12-10]. 
  7. ^ PIA00106: Venus - 3D Perspective View of Maat Mons. Planetary Photojournal. Jet Propulsion Lab. 1996-08-01 [2012-06-30]. 
  8. ^ Robinson, C. A.; Thornhill, G. D.; Parfitt, E. A. Large-scale volcanic activity at Maat Mons: Can this explain fluctuations in atmospheric chemistry observed by Pioneer Venus?. Journal of Geophysical Research. 1995-01, 100 (E6): 11755–11764 [2013-02-11]. Bibcode:1995JGR...10011755R. doi:10.1029/95JE00147. 
  9. ^ Mountains: Highest Points on Earth. National Geographic Society. [September 19, 2010]. 
  10. ^ NOVA Online: Surviving Denali, The Mission. NOVA. Public Broadcasting Corporation. 2000 [June 7, 2007]. 
  11. ^ Adam Helman. The Finest Peaks: Prominence and Other Mountain Measures. Trafford Publishing. 2005 [2012-12-09]. ISBN 978-1-4120-5995-4. 
  12. ^ Mount Everest (1:50,000 scale map), prepared under the direction of Bradford Washburn for the Boston Museum of Science, the Swiss Foundation for Alpine Research, and the National Geographic Society, 1991, ISBN 3-85515-105-9
  13. ^ 13.0 13.1 Fred W. Price. The Moon observer's handbook. London: Cambridge University Press. 1988. ISBN 0-521-33500-0. 
  14. ^ 14.0 14.1 Moore, Patrick. On the Moon. London: Cassell & Co. 2001. 
  15. ^ 15.0 15.1 Wöhler, C.; Lena, R.; Pau, K. C. The Lunar Dome Complex Mons Rümker: Morphometry, Rheology, and Mode of Emplacement. Proceedings Lunar and Planetary Science XXXVIII. League City, Texas: Dordrecht, D. Reidel Publishing Co. March 12–16, 2007 [2007-08-28]. 
  16. ^ 16.0 16.1 16.2 16.3 16.4 16.5 16.6 Plescia, J. B. Morphometric properties of Martian volcanoes. Journal of Geophysical Research. 2004, 109 (E3). doi:10.1029/2002JE002031. ISSN 0148-0227. 
  17. ^ Carr, M.H., 2006, The Surface of Mars, Cambridge, 307 p.
  18. ^ Comins, Neil F. Discovering the Essential Universe. Macmillan. 4 January 2012 [23 December 2012]. ISBN 978-1-4292-5519-6. 
  19. ^ JMARS MOLA elevation dataset. Christensen, P.; Gorelick, N.; Anwar, S.; Dickenshied, S.; Edwards, C.; Engle, E. (2007) "New Insights About Mars From the Creation and Analysis of Mars Global Datasets;" American Geophysical Union, Fall Meeting, abstract #P11E-01.
  20. ^ Gale Crater's History Book. Mars Odyssey THEMIS web site. Arizona State University. [2012-12-07]. 
  21. ^ Anderson, R. B.; Bell III, J. F. Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. International Journal of Mars Science and Exploration. 2010, 5: 76–128. Bibcode:2010IJMSE...5...76A. doi:10.1555/mars.2010.0004. 
  22. ^ A crater central peak is thought to sit below the mound of sediment. Gale crater may have once been entirely filled by sediment before erosional processes gained the upper hand over deposition.
  23. ^ Agle, D. C. 'Mount Sharp' On Mars Links Geology's Past and Future. NASA. 28 March 2012 [31 March 2012]. 
  24. ^ Vega, P. New View of Vesta Mountain From NASA's Dawn Mission. Jet Propulsion Lab's Dawn mission web site. NASA. 11 October 2011 [29 March 2012]. 
  25. ^ Schenk, P.; Marchi, S.; O'Brien, D.P.; Buczkowski, D.; Jaumann, R.; Yingst, A.; McCord, T.; Gaskell, R.; Roatsch, T.; Keller, H. E.; Raymond, C.A.; Russell, C.T. Mega-Impacts into Planetary Bodies: Global Effects of the Giant Rheasilvia Impact Basin on Vesta. 43rd Lunar and Planetary Science Conference. The Woodlands, Texas: LPI. 2012-03 [2012-09-06]. contribution 1659, id.2757. 
  26. ^ Perry, Jason. Boösaule Montes. Gish Bar Times blog. 2009-01-27 [2012-06-30]. 
  27. ^ Schenk, P.; Hargitai, H. Boösaule Montes. Io Mountain Database. [2012-06-30]. 
  28. ^ 28.0 28.1 Schenk, Paul; Hargitai, Henrik; Wilson, Ronda; McEwen, Alfred; Thomas, Peter. The mountains of Io: Global and geological perspectives from Voyager and Galileo. Journal of Geophysical Research. 2001, 106 (E12): 33201. doi:10.1029/2000JE001408. ISSN 0148-0227. 
  29. ^ Schenk, P.; Hargitai, H. Ionian Mons. Io Mountain Database. [2012-06-30]. 
  30. ^ Schenk, P.; Hargitai, H. Euboea Montes. Io Mountain Database. [2012-06-30]. 
  31. ^ 31.0 31.1 Martel, L. M. V. Big Mountain, Big Landslide on Jupiter's Moon, Io. NASA Solar System Exploration web site. 2011-02-16 [2012-06-30]. 
  32. ^ Moore, J. M.; McEwen, A. S.; Albin, E. F.; Greeley, R. Topographic evidence for shield volcanism on Io. Icarus. 1986, 67 (1): 181–183. doi:10.1016/0019-1035(86)90183-1. ISSN 0019-1035. 
  33. ^ 33.0 33.1 Schenk, P.; Hargitai, H. Unnamed volcanic mountain. Io Mountain Database. [2012-12-06]. 
  34. ^ 34.0 34.1 Schenk, P. M.; Wilson, R. R.; Davies, R. G. Shield volcano topography and the rheology of lava flows on Io. Icarus. 2004, 169 (1): 98–110. Bibcode:2004Icar..169...98S. doi:10.1016/j.icarus.2004.01.015. 
  35. ^ 35.0 35.1 Moore, Jeffrey M.; Schenk, Paul M.; Bruesch, Lindsey S.; Asphaug, Erik; McKinnon, William B. Large impact features on middle-sized icy satellites (PDF). Icarus. October 2004, 171 (2): 421–443. Bibcode:2004Icar..171..421M. doi:10.1016/j.icarus.2004.05.009.  编辑
  36. ^ 36.0 36.1 Mitri, G.; Bland,M. T.; Showman, A. P.; Radebaugh, J.; Stiles, B.; Lopes, R. M. C.; Lunine, J. I.; Pappalardo, R. T. Mountains on Titan: Modeling and observations. Journal of Geophysical Research. 2010, 115 (E10002): 1–15 [2012-07-05]. Bibcode:2010JGRE..11510002M. doi:10.1029/2010JE003592. 
  37. ^ Lopes, R. M. C.; Kirk, R. L.; Mitchell, K. L.; LeGall, A.; Barnes, J. W.; Hayes, A.; Kargel, J.; Wye, L.; Radebaugh, J.; Stofan, E. R.; Janssen, M. A.; Neish, C. D.; Wall, S. D.; Wood, C. A.; Lunine, J. I.; Malaska, M. J. Cryovolcanism on Titan: New results from Cassini RADAR and VIMS. Journal of Geophysical Research: Planets. 2013-03-19, 118: 1–20 [2013-04-10]. doi:10.1002/jgre.20062. 
  38. ^ Giese, B.; Denk, T.; Neukum, G.; Roatsch, T.; Helfenstein, P.; Thomas, P. C.; Turtle, E. P.; McEwen, A.; Porco, C. C. The topography of Iapetus' leading side (PDF). Icarus. 2008, 193 (2): 359–371. doi:10.1016/j.icarus.2007.06.005. ISSN 0019-1035. 
  39. ^ Porco, C. C.; et al.. Cassini Imaging Science: Initial Results on Phoebe and Iapetus. Science. 2005, 307 (5713): 1237–1242. doi:10.1126/science.1107981. ISSN 0036-8075. PMID 15731440. 2005Sci...307.1237P. 
  40. ^ Kerr, Richard A. How Saturn's Icy Moons Get a (Geologic) Life. Science. 2006-01-06, 311 (5757): 29. doi:10.1126/science.311.5757.29. PMID 16400121. 
  41. ^ Ip, W.-H. On a ring origin of the equatorial ridge of Iapetus (PDF). Geophysical Research Letters. 2006, 33 (16): L16203. doi:10.1029/2005GL025386. ISSN 0094-8276. 
  42. ^ Moore, P.; Henbest, N. Uranus - the View from Voyager. Journal of the British Astronomical Association. 1986-04, 96 (3): 131–137 [2012-07-07]. Bibcode:1986JBAA...96..131M. 

外部链接[编辑]