平均数不等式

维基百科,自由的百科全书
跳转至: 导航搜索

平均数不等式,或称平均值不等式均值不等式,是数学上的一组不等式,也是基本不等式的推广。它是说:

如果是正數,则

其中:

当且仅当 ,等号成立。

即对这些正数:调和平均数几何平均数算术平均数平方平均数(方均根)

简记为:“调几算方

时的情形[编辑]

  • 第一个不等号
  • 第二个不等号
  • 第三个不等号

证明方法[编辑]

关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法证明n维形式的均值不等式的方法:

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则,且仅当B=0时取等号。

引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,可以用数学归纳法证明。

原题等价于:, 当且仅当时取等号。

当n=2时易证;

假设当n=k时命题成立,即, 当且仅当时取等号。

那么当n=k+1时,不妨设中最大者,则

,根据引理

,当且仅当时,即时取等号。

利用琴生不等式法也可以很简单地证明均值不等式,同时还有柯西归纳法等方法。

参见[编辑]