开尔文方程

${\displaystyle \ln {\frac {p}{p_{0}}}={\frac {2\gamma V_{\text{m}}}{rRT}},}$

• 如果曲率是凸的，那么，${\displaystyle p>p_{0}}$
• 如果曲率是凹的，那么，${\displaystyle p, （其中${\displaystyle p_{0}}$是表面平坦时的蒸气压力）

${\displaystyle r}$增加，${\displaystyle p}$减少时，液滴就会变成本体液体

参考

1. ^ Robert von Helmholtz (1886) "Untersuchungen über Dämpfe und Nebel, besonders über solche von Lösungen" (Investigations of vapors and mists, especially of such things from solutions), Annalen der Physik, 263 (4): 508–543. On pages 523–525, Robert von Helmholtz converts Kelvin's equation to the form that appears here (which is actually the Ostwald–Freundlich equation).

相关阅读

• Sir William Thomson (1871) "On the equilibrium of vapour at a curved surface of liquid", Philosophical Magazine, series 4, 42 (282): 448–452.
• W. J. Moore, Physical Chemistry, 4th ed., Prentice Hall, Englewood Cliffs, N. J., (1962) p. 734–736.
• S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd edition, Academic Press, New York, (1982) p. 121.
• Arthur W. Adamson and Alice P. Gast, Physical Chemistry of Surfaces, 6th edition, Wiley-Blackwell (1997) p. 54.
• Butt, Hans-Jürgen, Karlheinz Graf, and Michael Kappl. "The Kelvin Equation". Physics and Chemistry of Interfaces. Weinheim: Wiley-VCH, 2006. 16–19. Print.
• Anton A. Valeev,"Simple Kelvin Equation Applicable in the Critical Point Vicinity",European Journal of Natural History, (2014), Issue 5, p. 13-14.